## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
## 特性
- 超轻量级中文OCR,总模型仅8.6M
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
- 检测模型DB(4.1M)+识别模型CRNN(4.5M)
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
## **超轻量级中文OCR体验**
![](doc/imgs_results/11.jpg)
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)。
#### 1.环境配置
请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
#### 2.模型下载
```
# 下载inference模型文件包
wget https://paddleocr.bj.bcebos.com/inference.tar
# inference模型文件包解压
tar -xf inference.tar
```
#### 3.单张图像或者图像集合预测
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。
```
# 设置PYTHONPATH环境变量
export PYTHONPATH=.
# 预测image_dir指定的单张图像
python tools/infer/predict_system.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
# 预测image_dir指定的图像集合
python tools/infer/predict_system.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
```
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于推理引擎预测](./doc/inference.md)。
## 文档教程
- [快速安装](./doc/installation.md)
- [文本检测模型训练/评估/预测](./doc/detection.md)
- [文本识别模型训练/评估/预测](./doc/recognition.md)
- [基于推理引擎预测](./doc/inference.md)
## 文本检测算法
PaddleOCR开源的文本检测算法列表:
- [x] [EAST](https://arxiv.org/abs/1704.03155)
- [x] [DB](https://arxiv.org/abs/1911.08947)
- [ ] [SAST](https://arxiv.org/abs/1908.05498)(百度自研, comming soon)
在ICDAR2015文本检测公开数据集上,算法效果如下:
|模型|骨干网络|Hmean|
|-|-|-|
|[EAST](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|ResNet50_vd|85.85%|
|[EAST](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|MobileNetV3|79.08%|
|[DB](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|ResNet50_vd|83.30%|
|[DB](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|MobileNetV3|73.00%|
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)。
## 文本识别算法
PaddleOCR开源的文本识别算法列表:
- [x] [CRNN](https://arxiv.org/abs/1507.05717)
- [x] [Rosetta](https://arxiv.org/abs/1910.05085)
- [x] [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
- [x] [RARE](https://arxiv.org/abs/1603.03915v1)
- [ ] [SRN](https://arxiv.org/abs/2003.12294)(百度自研, comming soon)
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|模型|骨干网络|Avg Accuracy|
|-|-|-|
|[Rosetta](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|Resnet34_vd|80.24%|
|[Rosetta](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|MobileNetV3|78.16%|
|[CRNN](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|Resnet34_vd|82.20%|
|[CRNN](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|MobileNetV3|79.37%|
|[STAR-Net](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|Resnet34_vd|83.93%|
|[STAR-Net](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|MobileNetV3|81.56%|
|[RARE](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|Resnet34_vd|84.90%|
|[RARE](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|MobileNetV3|83.32%|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)。
## 端到端OCR算法
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
## 效果展示
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
## 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```
## 许可证书
本项目的发布受Apache 2.0 license许可认证。
## 版本更新
## 如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。