# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(__file__) sys.path.append(__dir__) sys.path.append(os.path.join(__dir__, '..', '..', '..')) sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools')) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import json import cv2 from paddle import fluid import paddleslim as slim from copy import deepcopy from tools.eval_utils.eval_det_utils import eval_det_run from tools import program from ppocr.utils.utility import initial_logger from ppocr.data.reader_main import reader_main from ppocr.utils.save_load import init_model from ppocr.utils.character import CharacterOps from ppocr.utils.utility import create_module from ppocr.data.reader_main import reader_main logger = initial_logger() def get_pruned_params(program): params = [] for param in program.global_block().all_parameters(): if len( param.shape ) == 4 and 'depthwise' not in param.name and 'transpose' not in param.name: params.append(param.name) return params def eval_function(eval_args, mode='eval'): exe = eval_args['exe'] config = eval_args['config'] eval_info_dict = eval_args['eval_info_dict'] metrics = eval_det_run(exe, config, eval_info_dict, mode=mode) return metrics['hmean'] def main(): config = program.load_config(FLAGS.config) program.merge_config(FLAGS.opt) logger.info(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] program.check_gpu(use_gpu) alg = config['Global']['algorithm'] assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE'] if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']: config['Global']['char_ops'] = CharacterOps(config['Global']) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() startup_prog = fluid.Program() eval_program = fluid.Program() eval_build_outputs = program.build( config, eval_program, startup_prog, mode='test') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) exe = fluid.Executor(place) exe.run(startup_prog) init_model(config, eval_program, exe) eval_reader = reader_main(config=config, mode="eval") eval_info_dict = {'program':eval_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} eval_args = dict() eval_args = {'exe': exe, 'config': config, 'eval_info_dict': eval_info_dict} metrics = eval_function(eval_args) print("Baseline: {}".format(metrics)) params = get_pruned_params(eval_program) print('Start to analyze') sens_0 = slim.prune.sensitivity( eval_program, place, params, eval_function, sensitivities_file="sensitivities_0.data", pruned_ratios=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], eval_args=eval_args, criterion='geometry_median') if __name__ == '__main__': parser = program.ArgsParser() FLAGS = parser.parse_args() main()