from functools import partial import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers encoder_data_input_fields = ( "src_word", "src_pos", "src_slf_attn_bias", ) def wrap_layer_with_block(layer, block_idx): """ Make layer define support indicating block, by which we can add layers to other blocks within current block. This will make it easy to define cache among while loop. """ class BlockGuard(object): """ BlockGuard class. BlockGuard class is used to switch to the given block in a program by using the Python `with` keyword. """ def __init__(self, block_idx=None, main_program=None): self.main_program = fluid.default_main_program( ) if main_program is None else main_program self.old_block_idx = self.main_program.current_block().idx self.new_block_idx = block_idx def __enter__(self): self.main_program.current_block_idx = self.new_block_idx def __exit__(self, exc_type, exc_val, exc_tb): self.main_program.current_block_idx = self.old_block_idx if exc_type is not None: return False # re-raise exception return True def layer_wrapper(*args, **kwargs): with BlockGuard(block_idx): return layer(*args, **kwargs) return layer_wrapper def multi_head_attention(queries, keys, values, attn_bias, d_key, d_value, d_model, n_head=1, dropout_rate=0., cache=None, gather_idx=None, static_kv=False): """ Multi-Head Attention. Note that attn_bias is added to the logit before computing softmax activiation to mask certain selected positions so that they will not considered in attention weights. """ keys = queries if keys is None else keys values = keys if values is None else values if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): raise ValueError( "Inputs: quries, keys and values should all be 3-D tensors.") def __compute_qkv(queries, keys, values, n_head, d_key, d_value): """ Add linear projection to queries, keys, and values. """ q = layers.fc(input=queries, size=d_key * n_head, bias_attr=False, num_flatten_dims=2) # For encoder-decoder attention in inference, insert the ops and vars # into global block to use as cache among beam search. fc_layer = wrap_layer_with_block( layers.fc, fluid.default_main_program().current_block() .parent_idx) if cache is not None and static_kv else layers.fc k = fc_layer( input=keys, size=d_key * n_head, bias_attr=False, num_flatten_dims=2) v = fc_layer( input=values, size=d_value * n_head, bias_attr=False, num_flatten_dims=2) return q, k, v def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value): """ Reshape input tensors at the last dimension to split multi-heads and then transpose. Specifically, transform the input tensor with shape [bs, max_sequence_length, n_head * hidden_dim] to the output tensor with shape [bs, n_head, max_sequence_length, hidden_dim]. """ # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. reshaped_q = layers.reshape( x=queries, shape=[0, 0, n_head, d_key], inplace=True) # permuate the dimensions into: # [batch_size, n_head, max_sequence_len, hidden_size_per_head] q = layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3]) # For encoder-decoder attention in inference, insert the ops and vars # into global block to use as cache among beam search. reshape_layer = wrap_layer_with_block( layers.reshape, fluid.default_main_program().current_block() .parent_idx) if cache is not None and static_kv else layers.reshape transpose_layer = wrap_layer_with_block( layers.transpose, fluid.default_main_program().current_block(). parent_idx) if cache is not None and static_kv else layers.transpose reshaped_k = reshape_layer( x=keys, shape=[0, 0, n_head, d_key], inplace=True) k = transpose_layer(x=reshaped_k, perm=[0, 2, 1, 3]) reshaped_v = reshape_layer( x=values, shape=[0, 0, n_head, d_value], inplace=True) v = transpose_layer(x=reshaped_v, perm=[0, 2, 1, 3]) if cache is not None: # only for faster inference if static_kv: # For encoder-decoder attention in inference cache_k, cache_v = cache["static_k"], cache["static_v"] # To init the static_k and static_v in cache. # Maybe we can use condition_op(if_else) to do these at the first # step in while loop to replace these, however it might be less # efficient. static_cache_init = wrap_layer_with_block( layers.assign, fluid.default_main_program().current_block().parent_idx) static_cache_init(k, cache_k) static_cache_init(v, cache_v) else: # For decoder self-attention in inference cache_k, cache_v = cache["k"], cache["v"] # gather cell states corresponding to selected parent select_k = layers.gather(cache_k, index=gather_idx) select_v = layers.gather(cache_v, index=gather_idx) if not static_kv: # For self attention in inference, use cache and concat time steps. select_k = layers.concat([select_k, k], axis=2) select_v = layers.concat([select_v, v], axis=2) # update cell states(caches) cached in global block layers.assign(select_k, cache_k) layers.assign(select_v, cache_v) return q, select_k, select_v return q, k, v def __combine_heads(x): """ Transpose and then reshape the last two dimensions of inpunt tensor x so that it becomes one dimension, which is reverse to __split_heads. """ if len(x.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. return layers.reshape( x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True) def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate): """ Scaled Dot-Product Attention """ # print(q) # print(k) product = layers.matmul(x=q, y=k, transpose_y=True, alpha=d_key**-0.5) if attn_bias: product += attn_bias weights = layers.softmax(product) if dropout_rate: weights = layers.dropout( weights, dropout_prob=dropout_rate, seed=None, is_test=False) out = layers.matmul(weights, v) return out q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value) ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate) out = __combine_heads(ctx_multiheads) # Project back to the model size. proj_out = layers.fc(input=out, size=d_model, bias_attr=False, num_flatten_dims=2) return proj_out def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate): """ Position-wise Feed-Forward Networks. This module consists of two linear transformations with a ReLU activation in between, which is applied to each position separately and identically. """ hidden = layers.fc(input=x, size=d_inner_hid, num_flatten_dims=2, act="relu") if dropout_rate: hidden = layers.dropout( hidden, dropout_prob=dropout_rate, seed=None, is_test=False) out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2) return out def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.): """ Add residual connection, layer normalization and droput to the out tensor optionally according to the value of process_cmd. This will be used before or after multi-head attention and position-wise feed-forward networks. """ for cmd in process_cmd: if cmd == "a": # add residual connection out = out + prev_out if prev_out else out elif cmd == "n": # add layer normalization out = layers.layer_norm( out, begin_norm_axis=len(out.shape) - 1, param_attr=fluid.initializer.Constant(1.), bias_attr=fluid.initializer.Constant(0.)) elif cmd == "d": # add dropout if dropout_rate: out = layers.dropout( out, dropout_prob=dropout_rate, seed=None, is_test=False) return out pre_process_layer = partial(pre_post_process_layer, None) post_process_layer = pre_post_process_layer def prepare_encoder( src_word, # [b,t,c] src_pos, src_vocab_size, src_emb_dim, src_max_len, dropout_rate=0., bos_idx=0, word_emb_param_name=None, pos_enc_param_name=None): """Add word embeddings and position encodings. The output tensor has a shape of: [batch_size, max_src_length_in_batch, d_model]. This module is used at the bottom of the encoder stacks. """ src_word_emb = src_word src_word_emb = layers.cast(src_word_emb, 'float32') src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5) src_pos_enc = layers.embedding( src_pos, size=[src_max_len, src_emb_dim], param_attr=fluid.ParamAttr( name=pos_enc_param_name, trainable=False)) src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc return layers.dropout( enc_input, dropout_prob=dropout_rate, seed=None, is_test=False) if dropout_rate else enc_input def prepare_decoder(src_word, src_pos, src_vocab_size, src_emb_dim, src_max_len, dropout_rate=0., bos_idx=0, word_emb_param_name=None, pos_enc_param_name=None): """Add word embeddings and position encodings. The output tensor has a shape of: [batch_size, max_src_length_in_batch, d_model]. This module is used at the bottom of the encoder stacks. """ src_word_emb = layers.embedding( src_word, size=[src_vocab_size, src_emb_dim], padding_idx=bos_idx, # set embedding of bos to 0 param_attr=fluid.ParamAttr( name=word_emb_param_name, initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5))) src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5) src_pos_enc = layers.embedding( src_pos, size=[src_max_len, src_emb_dim], param_attr=fluid.ParamAttr( name=pos_enc_param_name, trainable=False)) src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc return layers.dropout( enc_input, dropout_prob=dropout_rate, seed=None, is_test=False) if dropout_rate else enc_input def encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd="n", postprocess_cmd="da"): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ attn_output = multi_head_attention( pre_process_layer(enc_input, preprocess_cmd, prepostprocess_dropout), None, None, attn_bias, d_key, d_value, d_model, n_head, attention_dropout) attn_output = post_process_layer(enc_input, attn_output, postprocess_cmd, prepostprocess_dropout) ffd_output = positionwise_feed_forward( pre_process_layer(attn_output, preprocess_cmd, prepostprocess_dropout), d_inner_hid, d_model, relu_dropout) return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout) def encoder(enc_input, attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd="n", postprocess_cmd="da"): """ The encoder is composed of a stack of identical layers returned by calling encoder_layer. """ for i in range(n_layer): enc_output = encoder_layer( enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, ) enc_input = enc_output enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout) return enc_output def wrap_encoder_forFeature(src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, enc_inputs=None, bos_idx=0): """ The wrapper assembles together all needed layers for the encoder. img, src_pos, src_slf_attn_bias = enc_inputs img """ conv_features, src_pos, src_slf_attn_bias = enc_inputs # b, t, c = conv_features.shape enc_input = prepare_encoder( conv_features, src_pos, src_vocab_size, d_model, max_length, prepostprocess_dropout, bos_idx=bos_idx, word_emb_param_name="src_word_emb_table") enc_output = encoder( enc_input, src_slf_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, ) return enc_output def wrap_encoder(src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, enc_inputs=None, bos_idx=0): """ The wrapper assembles together all needed layers for the encoder. img, src_pos, src_slf_attn_bias = enc_inputs img """ src_word, src_pos, src_slf_attn_bias = enc_inputs # enc_input = prepare_decoder( src_word, src_pos, src_vocab_size, d_model, max_length, prepostprocess_dropout, bos_idx=bos_idx, word_emb_param_name="src_word_emb_table") enc_output = encoder( enc_input, src_slf_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, ) return enc_output