# 服务器端C++预测 本教程将介绍在服务器端部署PaddleOCR超轻量中文检测、识别模型的详细步骤。 ## 1. 准备环境 ### 运行准备 - Linux环境,推荐使用docker。 ### 1.1 编译opencv库 * 首先需要从opencv官网上下载在Linux环境下源码编译的包,以opencv3.4.7为例,下载命令如下。 ``` wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz tar -xf 3.4.7.tar.gz ``` 最终可以在当前目录下看到`opencv-3.4.7/`的文件夹。 * 编译opencv,设置opencv源码路径(`root_path`)以及安装路径(`install_path`)。进入opencv源码路径下,按照下面的方式进行编译。 ```shell root_path=/paddle/libs/opencv-3.4.7 install_path=${root_path}/opencv3 rm -rf build mkdir build cd build cmake .. \ -DCMAKE_INSTALL_PREFIX=${install_path} \ -DCMAKE_BUILD_TYPE=Release \ -DBUILD_SHARED_LIBS=OFF \ -DWITH_IPP=OFF \ -DBUILD_IPP_IW=OFF \ -DWITH_LAPACK=OFF \ -DWITH_EIGEN=OFF \ -DCMAKE_INSTALL_LIBDIR=lib64 \ -DWITH_ZLIB=ON \ -DBUILD_ZLIB=ON \ -DWITH_JPEG=ON \ -DBUILD_JPEG=ON \ -DWITH_PNG=ON \ -DBUILD_PNG=ON \ -DWITH_TIFF=ON \ -DBUILD_TIFF=ON make -j make install ``` 最终在安装路径下的文件结构如下所示。 ``` opencv3/ |-- bin |-- include |-- lib |-- lib64 |-- share ``` ### 1.2 编译Paddle预测库 * 可以参考[Paddle预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)的说明,从github上获取Paddle代码,然后进行编译,生成最新的预测库。使用git获取代码方法如下。 ```shell git clone https://github.com/PaddlePaddle/Paddle.git ``` * 进入Paddle目录后,编译方法如下。 ```shell rm -rf build mkdir build cd build cmake .. \ -DWITH_CONTRIB=OFF \ -DWITH_MKL=ON \ -DWITH_MKLDNN=OFF \ -DWITH_TESTING=OFF \ -DCMAKE_BUILD_TYPE=Release \ -DWITH_INFERENCE_API_TEST=OFF \ -DON_INFER=ON \ -DWITH_PYTHON=ON make -j16 make inference_lib_dist ``` 更多编译参数选项可以参考Paddle C++预测库官网:[https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)。 * 编译完成之后,可以在`build/fluid_inference_install_dir/`文件下看到生成了以下文件及文件夹。 ``` build/fluid_inference_install_dir/ |-- CMakeCache.txt |-- paddle |-- third_party |-- version.txt ``` 其中`paddle`就是之后进行C++预测时所需的Paddle库,`version.txt`中包含当前预测库的版本信息。 ## 2 开始运行 ### 2.1 将模型导出为inference model * 可以参考[模型预测章节](../../doc/doc_ch/inference.md),导出inference model,用于模型预测。模型导出之后,假设放在`inference`目录下,则目录结构如下。 ``` inference/ |-- det_db | |--model | |--params |-- rec_rcnn | |--model | |--params ``` ### 2.2 编译PaddleOCR C++预测demo * 编译命令如下,其中Paddle C++预测库、opencv等其他依赖库的地址需要换成自己机器上的实际地址。 ```shell sh tools/build.sh ``` * 编译完成之后,会在`build`文件夹下生成一个名为`ocr_system`的可执行文件。 ### 运行demo * 执行以下命令,完成对一幅图像的OCR识别与检测,最终输出 ```shell sh tools/run.sh ``` 最终屏幕上会输出检测结果如下。