# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rapidfuzz.distance import Levenshtein import string class RecMetric(object): def __init__(self, main_indicator='acc', is_filter=False, ignore_space=True, **kwargs): self.main_indicator = main_indicator self.is_filter = is_filter self.ignore_space = ignore_space self.eps = 1e-5 self.reset() def _normalize_text(self, text): text = ''.join( filter(lambda x: x in (string.digits + string.ascii_letters), text)) return text.lower() def __call__(self, pred_label, *args, **kwargs): preds, labels = pred_label correct_num = 0 all_num = 0 norm_edit_dis = 0.0 for (pred, pred_conf), (target, _) in zip(preds, labels): if self.ignore_space: pred = pred.replace(" ", "") target = target.replace(" ", "") if self.is_filter: pred = self._normalize_text(pred) target = self._normalize_text(target) norm_edit_dis += Levenshtein.normalized_distance(pred, target) if pred == target: correct_num += 1 all_num += 1 self.correct_num += correct_num self.all_num += all_num self.norm_edit_dis += norm_edit_dis return { 'acc': correct_num / (all_num + self.eps), 'norm_edit_dis': 1 - norm_edit_dis / (all_num + self.eps) } def get_metric(self): """ return metrics { 'acc': 0, 'norm_edit_dis': 0, } """ acc = 1.0 * self.correct_num / (self.all_num + self.eps) norm_edit_dis = 1 - self.norm_edit_dis / (self.all_num + self.eps) self.reset() return {'acc': acc, 'norm_edit_dis': norm_edit_dis} def reset(self): self.correct_num = 0 self.all_num = 0 self.norm_edit_dis = 0 class CNTMetric(object): def __init__(self, main_indicator='acc', **kwargs): self.main_indicator = main_indicator self.eps = 1e-5 self.reset() def __call__(self, pred_label, *args, **kwargs): preds, labels = pred_label correct_num = 0 all_num = 0 for pred, target in zip(preds, labels): if pred == target: correct_num += 1 all_num += 1 self.correct_num += correct_num self.all_num += all_num return {'acc': correct_num / (all_num + self.eps), } def get_metric(self): """ return metrics { 'acc': 0, } """ acc = 1.0 * self.correct_num / (self.all_num + self.eps) self.reset() return {'acc': acc} def reset(self): self.correct_num = 0 self.all_num = 0