# RobustScanner
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
## 1. Introduction
Paper:
> [RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition](https://arxiv.org/pdf/2007.07542.pdf)
> Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne
Zhang
> ECCV, 2020
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
|RobustScanner|ResNet31|[rec_r31_robustscanner.yml](../../configs/rec/rec_r31_robustscanner.yml)|87.77%|coming soon|
Note:In addition to using the two text recognition datasets MJSynth and SynthText, [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg) data (extraction code: 627x), and some real data are used in training, the specific data details can refer to the paper.
## 2. Environment
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r31_robustscanner.yml
```
Evaluation:
```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
Prediction:
```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
## 4. Inference and Deployment
### 4.1 Python Inference
First, the model saved during the RobustScanner text recognition training process is converted into an inference model. you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r31_robustscanner
```
For RobustScanner text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False
```
### 4.2 C++ Inference
Not supported
### 4.3 Serving
Not supported
### 4.4 More
Not supported
## 5. FAQ
## Citation
```bibtex
@article{2020RobustScanner,
title={RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition},
author={Xiaoyu Yue and Zhanghui Kuang and Chenhao Lin and Hongbin Sun and Wayne Zhang},
journal={ECCV2020},
year={2020},
}
```