#!/bin/bash FILENAME=$1 # MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] MODE=$2 dataline=$(cat ${FILENAME}) # parser params IFS=$'\n' lines=(${dataline}) function func_parser_key(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[0]} echo ${tmp} } function func_parser_value(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[1]} echo ${tmp} } function status_check(){ last_status=$1 # the exit code run_command=$2 run_log=$3 if [ $last_status -eq 0 ]; then echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} else echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} fi } IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[0]}") python=$(func_parser_value "${lines[1]}") gpu_list=$(func_parser_value "${lines[2]}") autocast_list=$(func_parser_value "${lines[3]}") autocast_key=$(func_parser_key "${lines[3]}") epoch_key=$(func_parser_key "${lines[4]}") save_model_key=$(func_parser_key "${lines[5]}") save_infer_key=$(func_parser_key "${lines[6]}") train_batch_key=$(func_parser_key "${lines[7]}") train_use_gpu_key=$(func_parser_key "${lines[8]}") pretrain_model_key=$(func_parser_key "${lines[9]}") trainer_list=$(func_parser_value "${lines[10]}") norm_trainer=$(func_parser_value "${lines[11]}") pact_trainer=$(func_parser_value "${lines[12]}") fpgm_trainer=$(func_parser_value "${lines[13]}") distill_trainer=$(func_parser_value "${lines[14]}") eval_py=$(func_parser_value "${lines[15]}") norm_export=$(func_parser_value "${lines[16]}") pact_export=$(func_parser_value "${lines[17]}") fpgm_export=$(func_parser_value "${lines[18]}") distill_export=$(func_parser_value "${lines[19]}") inference_py=$(func_parser_value "${lines[20]}") use_gpu_key=$(func_parser_key "${lines[21]}") use_gpu_list=$(func_parser_value "${lines[21]}") use_mkldnn_key=$(func_parser_key "${lines[22]}") use_mkldnn_list=$(func_parser_value "${lines[22]}") cpu_threads_key=$(func_parser_key "${lines[23]}") cpu_threads_list=$(func_parser_value "${lines[23]}") batch_size_key=$(func_parser_key "${lines[24]}") batch_size_list=$(func_parser_value "${lines[24]}") use_trt_key=$(func_parser_key "${lines[25]}") use_trt_list=$(func_parser_value "${lines[25]}") precision_key=$(func_parser_key "${lines[26]}") precision_list=$(func_parser_value "${lines[26]}") model_dir_key=$(func_parser_key "${lines[27]}") image_dir_key=$(func_parser_key "${lines[28]}") save_log_key=$(func_parser_key "${lines[29]}") LOG_PATH="./test/output" mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results.log" if [ ${MODE} = "lite_train_infer" ]; then export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" export epoch_num=10 elif [ ${MODE} = "whole_infer" ]; then export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" export epoch_num=10 elif [ ${MODE} = "whole_train_infer" ]; then export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" export epoch_num=300 else export infer_img_dir="./inference/ch_det_data_50/all-sum-510" export infer_model_dir="./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy" fi function func_inference(){ IFS='|' _python=$1 _script=$2 _model_dir=$3 _log_path=$4 _img_dir=$5 # inference for use_gpu in ${use_gpu_list[*]}; do if [ ${use_gpu} = "False" ]; then for use_mkldnn in ${use_mkldnn_list[*]}; do for threads in ${cpu_threads_list[*]}; do for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" eval $command status_check $? "${command}" "${status_log}" done done done else for use_trt in ${use_trt_list[*]}; do for precision in ${precision_list[*]}; do if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then continue fi for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" eval $command status_check $? "${command}" "${status_log}" done done done fi done } if [ ${MODE} != "infer" ]; then IFS="|" for gpu in ${gpu_list[*]}; do train_use_gpu=True if [ ${gpu} = "-1" ];then train_use_gpu=False env="" elif [ ${#gpu} -le 1 ];then env="export CUDA_VISIBLE_DEVICES=${gpu}" elif [ ${#gpu} -le 15 ];then IFS="," array=(${gpu}) env="export CUDA_VISIBLE_DEVICES=${array[0]}" IFS="|" else IFS=";" array=(${gpu}) ips=${array[0]} gpu=${array[1]} IFS="|" fi for autocast in ${autocast_list[*]}; do for trainer in ${trainer_list[*]}; do if [ ${trainer} = "pact" ]; then run_train=${pact_trainer} run_export=${pact_export} elif [ ${trainer} = "fpgm" ]; then run_train=${fpgm_trainer} run_export=${fpgm_export} elif [ ${trainer} = "distill" ]; then run_train=${distill_trainer} run_export=${distill_export} else run_train=${norm_trainer} run_export=${norm_export} fi if [ ${run_train} = "null" ]; then continue fi if [ ${run_export} = "null" ]; then continue fi save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" if [ ${#gpu} -le 2 ];then # epoch_num #TODO cmd="${python} ${run_train} ${train_use_gpu_key}=${train_use_gpu} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log} " elif [ ${#gpu} -le 15 ];then cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}" else cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}" fi # run train eval $cmd status_check $? "${cmd}" "${status_log}" # run eval eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest" eval $eval_cmd status_check $? "${eval_cmd}" "${status_log}" # run export model save_infer_path="${save_log}" export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest ${save_infer_key}=${save_infer_path}" eval $export_cmd status_check $? "${export_cmd}" "${status_log}" #run inference save_infer_path="${save_log}" func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" done done done else save_infer_path="${LOG_PATH}/${MODE}" run_export=${norm_export} export_cmd="${python} ${run_export} ${save_model_key}=${save_infer_path} ${pretrain_model_key}=${infer_model_dir} ${save_infer_key}=${save_infer_path}" eval $export_cmd status_check $? "${export_cmd}" "${status_log}" #run inference func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" fi