# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import sys import json __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import paddle from paddle.jit import to_static from ppocr.data import create_operators, transform from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.utils.save_load import load_model from ppocr.utils.utility import get_image_file_list import tools.program as program import cv2 def main(config, device, logger, vdl_writer): global_config = config['Global'] # build post process post_process_class = build_post_process(config['PostProcess'], global_config) # build model if hasattr(post_process_class, 'character'): config['Architecture']["Head"]['out_channels'] = len( getattr(post_process_class, 'character')) model = build_model(config['Architecture']) load_model(config, model) # create data ops transforms = [] use_padding = False for op in config['Eval']['dataset']['transforms']: op_name = list(op)[0] if 'Label' in op_name: continue if op_name == 'KeepKeys': op[op_name]['keep_keys'] = ['image'] if op_name == "ResizeTableImage": use_padding = True padding_max_len = op['ResizeTableImage']['max_len'] transforms.append(op) global_config['infer_mode'] = True ops = create_operators(transforms, global_config) model.eval() for file in get_image_file_list(config['Global']['infer_img']): logger.info("infer_img: {}".format(file)) with open(file, 'rb') as f: img = f.read() data = {'image': img} batch = transform(data, ops) images = np.expand_dims(batch[0], axis=0) images = paddle.to_tensor(images) preds = model(images) post_result = post_process_class(preds) res_html_code = post_result['res_html_code'] res_loc = post_result['res_loc'] img = cv2.imread(file) imgh, imgw = img.shape[0:2] res_loc_final = [] for rno in range(len(res_loc[0])): x0, y0, x1, y1 = res_loc[0][rno] left = max(int(imgw * x0), 0) top = max(int(imgh * y0), 0) right = min(int(imgw * x1), imgw - 1) bottom = min(int(imgh * y1), imgh - 1) cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2) res_loc_final.append([left, top, right, bottom]) res_loc_str = json.dumps(res_loc_final) logger.info("result: {}, {}".format(res_html_code, res_loc_final)) logger.info("success!") if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess() main(config, device, logger, vdl_writer)