# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import errno import os import pickle import six import paddle __all__ = ['init_model', 'save_model', 'load_dygraph_pretrain'] def _mkdir_if_not_exist(path, logger): """ mkdir if not exists, ignore the exception when multiprocess mkdir together """ if not os.path.exists(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): logger.warning( 'be happy if some process has already created {}'.format( path)) else: raise OSError('Failed to mkdir {}'.format(path)) def load_dygraph_pretrain( model, logger, path=None, load_static_weights=False, ): if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')): raise ValueError("Model pretrain path {} does not " "exists.".format(path)) if load_static_weights: pre_state_dict = paddle.io.load_program_state(path) param_state_dict = {} model_dict = model.state_dict() for key in model_dict.keys(): weight_name = model_dict[key].name weight_name = weight_name.replace('binarize', '').replace( 'thresh', '') # for DB if weight_name in pre_state_dict.keys(): logger.info('Load weight: {}, shape: {}'.format( weight_name, pre_state_dict[weight_name].shape)) if 'encoder_rnn' in key: # delete axis which is 1 pre_state_dict[weight_name] = pre_state_dict[ weight_name].squeeze() # change axis if len(pre_state_dict[weight_name].shape) > 1: pre_state_dict[weight_name] = pre_state_dict[ weight_name].transpose((1, 0)) param_state_dict[key] = pre_state_dict[weight_name] else: param_state_dict[key] = model_dict[key] model.set_dict(param_state_dict) return param_state_dict, optim_state_dict = paddle.load(path) model.set_dict(param_state_dict) return def init_model(config, model, logger, optimizer=None, lr_scheduler=None): """ load model from checkpoint or pretrained_model """ gloabl_config = config['Global'] checkpoints = gloabl_config.get('checkpoints') pretrained_model = gloabl_config.get('pretrained_model') best_model_dict = {} if checkpoints: assert os.path.exists(checkpoints + ".pdparams"), \ "Given dir {}.pdparams not exist.".format(checkpoints) assert os.path.exists(checkpoints + ".pdopt"), \ "Given dir {}.pdopt not exist.".format(checkpoints) para_dict, opti_dict = paddle.load(checkpoints) model.set_dict(para_dict) if optimizer is not None: optimizer.set_state_dict(opti_dict) if os.path.exists(checkpoints + '.states'): with open(checkpoints + '.states', 'rb') as f: states_dict = pickle.load(f) if six.PY2 else pickle.load( f, encoding='latin1') best_model_dict = states_dict.get('best_model_dict', {}) if 'epoch' in states_dict: best_model_dict['start_epoch'] = states_dict['epoch'] + 1 best_model_dict['start_epoch'] = best_model_dict['best_epoch'] + 1 logger.info("resume from {}".format(checkpoints)) elif pretrained_model: load_static_weights = gloabl_config.get('load_static_weights', False) if pretrained_model: if not isinstance(pretrained_model, list): pretrained_model = [pretrained_model] if not isinstance(load_static_weights, list): load_static_weights = [load_static_weights] * len( pretrained_model) for idx, pretrained in enumerate(pretrained_model): load_static = load_static_weights[idx] load_dygraph_pretrain( model, logger, path=pretrained, load_static_weights=load_static) logger.info("load pretrained model from {}".format( pretrained_model)) else: logger.info('train from scratch') return best_model_dict def save_model(net, optimizer, model_path, logger, is_best=False, prefix='ppocr', **kwargs): """ save model to the target path """ _mkdir_if_not_exist(model_path, logger) model_prefix = os.path.join(model_path, prefix) paddle.save(net.state_dict(), model_prefix) paddle.save(optimizer.state_dict(), model_prefix) # save metric and config with open(model_prefix + '.states', 'wb') as f: pickle.dump(kwargs, f, protocol=2) if is_best: logger.info('save best model is to {}'.format(model_prefix)) else: logger.info("save model in {}".format(model_prefix))