# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) from ppocr.data import build_dataloader from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric from ppocr.utils.save_load import load_model from ppocr.utils.utility import print_dict import tools.program as program def main(): global_config = config['Global'] # build dataloader valid_dataloader = build_dataloader(config, 'Eval', device, logger) # build post process post_process_class = build_post_process(config['PostProcess'], global_config) # build model # for rec algorithm if hasattr(post_process_class, 'character'): char_num = len(getattr(post_process_class, 'character')) if config['Architecture']["algorithm"] in ["Distillation", ]: # distillation model for key in config['Architecture']["Models"]: config['Architecture']["Models"][key]["Head"][ 'out_channels'] = char_num else: # base rec model config['Architecture']["Head"]['out_channels'] = char_num model = build_model(config['Architecture']) extra_input = config['Architecture'][ 'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"] if "model_type" in config['Architecture'].keys(): model_type = config['Architecture']['model_type'] else: model_type = None best_model_dict = load_model( config, model, model_type=config['Architecture']["model_type"]) if len(best_model_dict): logger.info('metric in ckpt ***************') for k, v in best_model_dict.items(): logger.info('{}:{}'.format(k, v)) # build metric eval_class = build_metric(config['Metric']) # start eval metric = program.eval(model, valid_dataloader, post_process_class, eval_class, model_type, extra_input) logger.info('metric eval ***************') for k, v in metric.items(): logger.info('{}:{}'.format(k, v)) if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess() main()