from paddle import nn class MTB(nn.Layer): def __init__(self, cnn_num, in_channels): super(MTB, self).__init__() self.block = nn.Sequential() self.out_channels = in_channels self.cnn_num = cnn_num if self.cnn_num == 2: for i in range(self.cnn_num): self.block.add_sublayer('conv_{}'.format(i), nn.Conv2D( in_channels = in_channels if i == 0 else 32*(2**(i-1)), out_channels = 32*(2**i), kernel_size = 3, stride = 2, padding=1)) self.block.add_sublayer('relu_{}'.format(i), nn.ReLU()) self.block.add_sublayer('bn_{}'.format(i), nn.BatchNorm2D(32*(2**i))) def forward(self, images): x = self.block(images) if self.cnn_num == 2: # (b, w, h, c) x = x.transpose([0, 3, 2, 1]) x_shape = x.shape x = x.reshape([x_shape[0], x_shape[1], x_shape[2] * x_shape[3]]) return x