# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from paddle.optimizer import lr from .lr_scheduler import CyclicalCosineDecay, OneCycleDecay class Linear(object): """ Linear learning rate decay Args: lr (float): The initial learning rate. It is a python float number. epochs(int): The decay step size. It determines the decay cycle. end_lr(float, optional): The minimum final learning rate. Default: 0.0001. power(float, optional): Power of polynomial. Default: 1.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, epochs, step_each_epoch, end_lr=0.0, power=1.0, warmup_epoch=0, last_epoch=-1, **kwargs): super(Linear, self).__init__() self.learning_rate = learning_rate self.epochs = epochs * step_each_epoch self.end_lr = end_lr self.power = power self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = lr.PolynomialDecay( learning_rate=self.learning_rate, decay_steps=self.epochs, end_lr=self.end_lr, power=self.power, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class Cosine(object): """ Cosine learning rate decay lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1) Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, step_each_epoch, epochs, warmup_epoch=0, last_epoch=-1, **kwargs): super(Cosine, self).__init__() self.learning_rate = learning_rate self.T_max = step_each_epoch * epochs self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = lr.CosineAnnealingDecay( learning_rate=self.learning_rate, T_max=self.T_max, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class Step(object): """ Piecewise learning rate decay Args: step_each_epoch(int): steps each epoch learning_rate (float): The initial learning rate. It is a python float number. step_size (int): the interval to update. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, step_size, step_each_epoch, gamma, warmup_epoch=0, last_epoch=-1, **kwargs): super(Step, self).__init__() self.step_size = step_each_epoch * step_size self.learning_rate = learning_rate self.gamma = gamma self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = lr.StepDecay( learning_rate=self.learning_rate, step_size=self.step_size, gamma=self.gamma, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class Piecewise(object): """ Piecewise learning rate decay Args: boundaries(list): A list of steps numbers. The type of element in the list is python int. values(list): A list of learning rate values that will be picked during different epoch boundaries. The type of element in the list is python float. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, step_each_epoch, decay_epochs, values, warmup_epoch=0, last_epoch=-1, **kwargs): super(Piecewise, self).__init__() self.boundaries = [step_each_epoch * e for e in decay_epochs] self.values = values self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = lr.PiecewiseDecay( boundaries=self.boundaries, values=self.values, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.values[0], last_epoch=self.last_epoch) return learning_rate class CyclicalCosine(object): """ Cyclical cosine learning rate decay Args: learning_rate(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs cycle(int): period of the cosine learning rate last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, step_each_epoch, epochs, cycle, warmup_epoch=0, last_epoch=-1, **kwargs): super(CyclicalCosine, self).__init__() self.learning_rate = learning_rate self.T_max = step_each_epoch * epochs self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) self.cycle = round(cycle * step_each_epoch) def __call__(self): learning_rate = CyclicalCosineDecay( learning_rate=self.learning_rate, T_max=self.T_max, cycle=self.cycle, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class OneCycle(object): """ One Cycle learning rate decay Args: max_lr(float): Upper learning rate boundaries epochs(int): total training epochs step_each_epoch(int): steps each epoch anneal_strategy(str): {‘cos’, ‘linear’} Specifies the annealing strategy: “cos” for cosine annealing, “linear” for linear annealing. Default: ‘cos’ three_phase(bool): If True, use a third phase of the schedule to annihilate the learning rate according to ‘final_div_factor’ instead of modifying the second phase (the first two phases will be symmetrical about the step indicated by ‘pct_start’). last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, max_lr, epochs, step_each_epoch, anneal_strategy='cos', three_phase=False, warmup_epoch=0, last_epoch=-1, **kwargs): super(OneCycle, self).__init__() self.max_lr = max_lr self.epochs = epochs self.steps_per_epoch = step_each_epoch self.anneal_strategy = anneal_strategy self.three_phase = three_phase self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = OneCycleDecay( max_lr=self.max_lr, epochs=self.epochs, steps_per_epoch=self.steps_per_epoch, anneal_strategy=self.anneal_strategy, three_phase=self.three_phase, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.max_lr, last_epoch=self.last_epoch) return learning_rate class Const(object): """ Const learning rate decay Args: learning_rate(float): initial learning rate step_each_epoch(int): steps each epoch last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, step_each_epoch, warmup_epoch=0, last_epoch=-1, **kwargs): super(Const, self).__init__() self.learning_rate = learning_rate self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = self.learning_rate if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class MultiStepDecay(object): """ Piecewise learning rate decay Args: step_each_epoch(int): steps each epoch learning_rate (float): The initial learning rate. It is a python float number. step_size (int): the interval to update. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, milestones, step_each_epoch, gamma, warmup_epoch=0, last_epoch=-1, **kwargs): super(MultiStepDecay, self).__init__() self.milestones = [step_each_epoch * e for e in milestones] self.learning_rate = learning_rate self.gamma = gamma self.last_epoch = last_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch) def __call__(self): learning_rate = lr.MultiStepDecay( learning_rate=self.learning_rate, milestones=self.milestones, gamma=self.gamma, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate