#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import L1Loss from paddle.nn import MSELoss as L2Loss from paddle.nn import SmoothL1Loss class CELoss(nn.Layer): def __init__(self, name="loss_ce", epsilon=None): super().__init__() self.name = name if epsilon is not None and (epsilon <= 0 or epsilon >= 1): epsilon = None self.epsilon = epsilon def _labelsmoothing(self, target, class_num): if target.shape[-1] != class_num: one_hot_target = F.one_hot(target, class_num) else: one_hot_target = target soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon) soft_target = paddle.reshape(soft_target, shape=[-1, class_num]) return soft_target def forward(self, x, label): loss_dict = {} if self.epsilon is not None: class_num = x.shape[-1] label = self._labelsmoothing(label, class_num) x = -F.log_softmax(x, axis=-1) loss = paddle.sum(x * label, axis=-1) else: if label.shape[-1] == x.shape[-1]: label = F.softmax(label, axis=-1) soft_label = True else: soft_label = False loss = F.cross_entropy(x, label=label, soft_label=soft_label) loss_dict[self.name] = paddle.mean(loss) return loss_dict class DMLLoss(nn.Layer): """ DMLLoss """ def __init__(self, name="loss_dml"): super().__init__() self.name = name def forward(self, out1, out2): loss_dict = {} soft_out1 = F.softmax(out1, axis=-1) log_soft_out1 = paddle.log(soft_out1) soft_out2 = F.softmax(out2, axis=-1) log_soft_out2 = paddle.log(soft_out2) loss = (F.kl_div( log_soft_out1, soft_out2, reduction='batchmean') + F.kl_div( log_soft_out2, soft_out1, reduction='batchmean')) / 2.0 loss_dict[self.name] = loss return loss_dict class DistanceLoss(nn.Layer): """ DistanceLoss: mode: loss mode name: loss key in the output dict """ def __init__(self, mode="l2", name="loss_dist", **kargs): assert mode in ["l1", "l2", "smooth_l1"] if mode == "l1": self.loss_func = nn.L1Loss(**kargs) elif mode == "l1": self.loss_func = nn.MSELoss(**kargs) elif mode == "smooth_l1": self.loss_func = nn.SmoothL1Loss(**kargs) self.name = "{}_{}".format(name, mode) def forward(self, x, y): return {self.name: self.loss_func(x, y)}