# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ppstructure.table.table_master_match import deal_eb_token, deal_bb def distance(box_1, box_2): x1, y1, x2, y2 = box_1 x3, y3, x4, y4 = box_2 dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4 - x2) + abs(y4 - y2) dis_2 = abs(x3 - x1) + abs(y3 - y1) dis_3 = abs(x4 - x2) + abs(y4 - y2) return dis + min(dis_2, dis_3) def compute_iou(rec1, rec2): """ computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU """ # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0.0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return (intersect / (sum_area - intersect)) * 1.0 class TableMatch: def __init__(self, filter_ocr_result=False, use_master=False): self.filter_ocr_result = filter_ocr_result self.use_master = use_master def __call__(self, structure_res, dt_boxes, rec_res): pred_structures, pred_bboxes = structure_res if self.filter_ocr_result: dt_boxes, rec_res = self.filter_ocr_result(pred_bboxes, dt_boxes, rec_res) matched_index = self.match_result(dt_boxes, pred_bboxes) if self.use_master: pred_html, pred = self.get_pred_html_master(pred_structures, matched_index, rec_res) else: pred_html, pred = self.get_pred_html(pred_structures, matched_index, rec_res) return pred_html def match_result(self, dt_boxes, pred_bboxes): matched = {} for i, gt_box in enumerate(dt_boxes): distances = [] for j, pred_box in enumerate(pred_bboxes): if len(pred_box) == 8: pred_box = [ np.min(pred_box[0::2]), np.min(pred_box[1::2]), np.max(pred_box[0::2]), np.max(pred_box[1::2]) ] distances.append((distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box) )) # compute iou and l1 distance sorted_distances = distances.copy() # select det box by iou and l1 distance sorted_distances = sorted( sorted_distances, key=lambda item: (item[1], item[0])) if distances.index(sorted_distances[0]) not in matched.keys(): matched[distances.index(sorted_distances[0])] = [i] else: matched[distances.index(sorted_distances[0])].append(i) return matched def get_pred_html(self, pred_structures, matched_index, ocr_contents): end_html = [] td_index = 0 for tag in pred_structures: if '' in tag: if '