// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "glog/logging.h" #include "omp.h" #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace cv; using namespace PaddleOCR; int main(int argc, char **argv) { if (argc < 3) { std::cerr << "[ERROR] usage: " << argv[0] << " configure_filepath image_path\n"; exit(1); } OCRConfig config(argv[1]); config.PrintConfigInfo(); std::string img_path(argv[2]); std::vector all_img_names; // cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR); Utility::GetAllFiles((char *)img_path.c_str(), all_img_names); DBDetector det(config.det_model_dir, config.use_gpu, config.gpu_id, config.gpu_mem, config.cpu_math_library_num_threads, config.use_mkldnn, config.max_side_len, config.det_db_thresh, config.det_db_box_thresh, config.det_db_unclip_ratio, config.use_polygon_score, config.visualize, config.use_tensorrt, config.use_fp16); Classifier *cls = nullptr; if (config.use_angle_cls == true) { cls = new Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id, config.gpu_mem, config.cpu_math_library_num_threads, config.use_mkldnn, config.cls_thresh, config.use_tensorrt, config.use_fp16); } CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id, config.gpu_mem, config.cpu_math_library_num_threads, config.use_mkldnn, config.char_list_file, config.use_tensorrt, config.use_fp16); auto start = std::chrono::system_clock::now(); for (auto img_dir : all_img_names) { LOG(INFO) << "The predict img: " << img_dir; cv::Mat srcimg = cv::imread(img_dir, cv::IMREAD_COLOR); if (!srcimg.data) { std::cerr << "[ERROR] image read failed! image path: " << img_path << "\n"; exit(1); } std::vector>> boxes; det.Run(srcimg, boxes); // for (auto box : boxes){ // std::cout << "box: " << box[0][0] << " " << box[0][1] << " " // << box[1][0] << " " << box[1][1] << " " // << box[2][0] << " " << box[2][1] << " " // << box[3][0] << " " << box[3][1] << " " << std::endl; // } rec.Run(boxes, srcimg, cls); auto end = std::chrono::system_clock::now(); auto duration = std::chrono::duration_cast(end - start); std::cout << "Cost " << double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den << "s" << std::endl; } return 0; }