Global: use_gpu: true epoch_num: 1200 log_smooth_window: 20 print_batch_step: 2 save_model_dir: ./output/db_mv3/ save_epoch_step: 1200 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [4000, 5000] # if pretrained_model is saved in static mode, load_static_weights must set to True load_static_weights: True cal_metric_during_train: False pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy save_inference_dir: use_visualdl: False infer_img: doc/imgs_en/img_10.jpg save_res_path: ./output/det_db/predicts_db.txt Architecture: model_type: det algorithm: DB Transform: Backbone: name: MobileNetV3 scale: 0.5 model_name: large Neck: name: DBFPN out_channels: 256 Head: name: DBHead k: 50 Loss: name: DBLoss balance_loss: true main_loss_type: DiceLoss alpha: 5 beta: 10 ohem_ratio: 3 Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: # name: Cosine learning_rate: 0.001 # warmup_epoch: 0 regularizer: name: 'L2' factor: 0 PostProcess: name: DBPostProcess thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5 Metric: name: DetMetric main_indicator: hmean Train: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list: - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt ratio_list: [0.5] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } - { 'type': Affine, 'args': { 'rotate': [-10, 10] } } - { 'type': Resize, 'args': { 'size': [0.5, 3] } } - EastRandomCropData: size: [640, 640] max_tries: 50 keep_ratio: true - MakeBorderMap: shrink_ratio: 0.4 thresh_min: 0.3 thresh_max: 0.7 - MakeShrinkMap: shrink_ratio: 0.4 min_text_size: 8 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list loader: drop_last: False batch_size_per_card: 4 num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list: - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - DetResizeForTest: image_shape: [736, 1280] - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'shape', 'polys', 'ignore_tags'] loader: drop_last: False batch_size_per_card: 1 # must be 1 num_workers: 2