# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import numpy as np import time import tools.infer.utility as utility from ppocr.data import create_operators, transform from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger from ppocr.utils.utility import get_image_file_list, check_and_read_gif from ppstructure.utility import parse_args from picodet_postprocess import PicoDetPostProcess logger = get_logger() class LayoutPredictor(object): def __init__(self, args): pre_process_list = [{ 'Resize': { 'size': [800, 608] } }, { 'NormalizeImage': { 'std': [0.229, 0.224, 0.225], 'mean': [0.485, 0.456, 0.406], 'scale': '1./255.', 'order': 'hwc' } }, { 'ToCHWImage': None }, { 'KeepKeys': { 'keep_keys': ['image'] } }] # postprocess_params = { # 'name': 'LayoutPostProcess', # "character_dict_path": args.layout_dict_path, # } self.preprocess_op = create_operators(pre_process_list) # self.postprocess_op = build_post_process(postprocess_params) self.predictor, self.input_tensor, self.output_tensors, self.config = \ utility.create_predictor(args, 'layout', logger) def __call__(self, img): ori_im = img.copy() data = {'image': img} data = transform(data, self.preprocess_op) img = data[0] if img is None: return None, 0 img = np.expand_dims(img, axis=0) img = img.copy() preds, elapse = 0, 1 starttime = time.time() self.input_tensor.copy_from_cpu(img) self.predictor.run() # outputs = [] # for output_tensor in self.output_tensors: # output = output_tensor.copy_to_cpu() # outputs.append(output) np_score_list, np_boxes_list = [], [] output_names = self.predictor.get_output_names() num_outs = int(len(output_names) / 2) for out_idx in range(num_outs): np_score_list.append( self.predictor.get_output_handle(output_names[out_idx]) .copy_to_cpu()) np_boxes_list.append( self.predictor.get_output_handle(output_names[ out_idx + num_outs]).copy_to_cpu()) # result = dict(boxes=np_score_list, boxes_num=np_boxes_list) postprocessor = PicoDetPostProcess( (800, 608), [[800., 608.]], np.array([[1.010101, 0.99346405]]), strides=[8, 16, 32, 64], nms_threshold=0.5) np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list) result = dict(boxes=np_boxes, boxes_num=np_boxes_num) # print(result) im_bboxes_num = result['boxes_num'][0] # print('im_bboxes_num:',im_bboxes_num) bboxs = result['boxes'][0:0 + im_bboxes_num, :] threshold = 0.5 expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] preds = [] id2label = {1: 'text', 2: 'title', 3: 'list', 4: 'table', 5: 'figure'} for dt in np_boxes: clsid, bbox, score = int(dt[0]), dt[2:], dt[1] label = id2label[clsid + 1] result_di = {'bbox': bbox, 'label': label} preds.append(result_di) # print('result_di',result_di) # print('clsid, bbox, score:',clsid, bbox, score) elapse = time.time() - starttime return preds, elapse def main(args): image_file_list = get_image_file_list(args.image_dir) layout_predictor = LayoutPredictor(args) count = 0 total_time = 0 for image_file in image_file_list: img, flag = check_and_read_gif(image_file) if not flag: img = cv2.imread(image_file) if img is None: logger.info("error in loading image:{}".format(image_file)) continue layout_res, elapse = layout_predictor(img) logger.info("result: {}".format(layout_res)) if count > 0: total_time += elapse count += 1 logger.info("Predict time of {}: {}".format(image_file, elapse)) if __name__ == "__main__": main(parse_args())