# SAR
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
## 1. Introduction
Paper:
> [Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition](https://arxiv.org/abs/1811.00751)
> Hui Li, Peng Wang, Chunhua Shen, Guyu Zhang
> AAAI, 2019
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
|SAR|ResNet31|[rec_r31_sar.yml](../../configs/rec/rec_r31_sar.yml)|87.20%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar)|
Note:In addition to using the two text recognition datasets MJSynth and SynthText, [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg) data (extraction code: 627x), and some real data are used in training, the specific data details can refer to the paper.
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r31_sar.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r31_sar.yml
```
Evaluation:
```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_sar.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
Prediction:
```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r31_sar.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
## 4. Inference and Deployment
### 4.1 Python Inference
First, the model saved during the SAR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) ), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_r31_sar.yml -o Global.pretrained_model=./rec_r31_sar_train/best_accuracy Global.save_inference_dir=./inference/rec_sar
```
For SAR text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_sar/" --rec_image_shape="3, 48, 48, 160" --rec_char_type="ch" --rec_algorithm="SAR" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False
```
### 4.2 C++ Inference
Not supported
### 4.3 Serving
Not supported
### 4.4 More
Not supported
## 5. FAQ
## Citation
```bibtex
@article{Li2019ShowAA,
title={Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition},
author={Hui Li and Peng Wang and Chunhua Shen and Guyu Zhang},
journal={ArXiv},
year={2019},
volume={abs/1811.00751}
}
```