# SAST - [1. Introduction](#1) - [2. Environment](#2) - [3. Model Training / Evaluation / Prediction](#3) - [3.1 Training](#3-1) - [3.2 Evaluation](#3-2) - [3.3 Prediction](#3-3) - [4. Inference and Deployment](#4) - [4.1 Python Inference](#4-1) - [5. FAQ](#5) ## 1. Introduction Paper: > [A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning](https://arxiv.org/abs/1908.05498) > Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming > ACM MM, 2019 On the ICDAR2015 dataset, the text detection result is as follows: |Model|Backbone|Configuration|Precision|Recall|Hmean|Download| | --- | --- | --- | --- | --- | --- | --- | |SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_icdar15.yml](../../configs/det/det_r50_vd_sast_icdar15.yml)|91.39%|83.77%|87.42%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)| On the Total-text dataset, the text detection result is as follows: |Model|Backbone|Configuration|Precision|Recall|Hmean|Download| | --- | --- | --- | --- | --- | --- | --- | |SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_totaltext.yml](../../configs/det/det_r50_vd_sast_totaltext.yml)|89.63%|78.44%|83.66%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)| ## 2. Environment Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md). ## 3. Model Training / Evaluation / Prediction Please refer to [text detection training tutorial](./detection_en.md). PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models. ## 4. Inference and Deployment ### 4.1 Python Inference First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert: ```shell python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast ``` SAST text detection model inference, you can execute the following command: ```shell python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast/" ``` The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows: ![](../imgs_results/det_res_img_10_sast.jpg) **Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images. ## 5. FAQ ## Citation ```bibtex @inproceedings{wang2019single, title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning}, author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia}, pages={1277--1285}, year={2019} } ```