# Paddle2ONNX model transformation and prediction This chapter describes how the PaddleOCR model is converted into an ONNX model and predicted based on the ONNXRuntime engine. ## 1. Environment preparation Need to prepare PaddleOCR, Paddle2ONNX model conversion environment, and ONNXRuntime prediction environment ### PaddleOCR Clone the PaddleOCR warehouse, use the release/2.6 branch, and install it. ``` git clone -b release/2.6 https://github.com/PaddlePaddle/PaddleOCR.git cd PaddleOCR && python3.7 setup.py install ``` ### Paddle2ONNX Paddle2ONNX supports converting the PaddlePaddle model format to the ONNX model format. The operator currently supports exporting ONNX Opset 9~11 stably, and some Paddle operators support lower ONNX Opset conversion. For more details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_en.md) - install Paddle2ONNX ``` python3.7 -m pip install paddle2onnx ``` - install ONNXRuntime ``` # It is recommended to install version 1.9.0, and the version number can be changed according to the environment python3.7 -m pip install onnxruntime==1.9.0 ``` ## 2. Model conversion - Paddle model download There are two ways to obtain the Paddle model: Download the prediction model provided by PaddleOCR in [model_list](../../doc/doc_en/models_list_en.md); Refer to [Model Export Instructions](../../doc/doc_en/inference_en.md#1-convert-training-model-to-inference-model) to convert the trained weights to inference_model. Take the PP-OCRv3 detection, recognition, and classification model as an example: ``` wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar cd ./inference && tar xf ch_PP-OCRv3_det_infer.tar && cd .. wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar cd ./inference && tar xf ch_PP-OCRv3_rec_infer.tar && cd .. wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd .. ``` - convert model Convert Paddle inference model to ONNX model format using Paddle2ONNX: ``` paddle2onnx --model_dir ./inference/ch_PP-OCRv3_det_infer \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file ./inference/det_onnx/model.onnx \ --opset_version 10 \ --input_shape_dict="{'x':[-1,3,-1,-1]}" \ --enable_onnx_checker True paddle2onnx --model_dir ./inference/ch_PP-OCRv3_rec_infer \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file ./inference/rec_onnx/model.onnx \ --opset_version 10 \ --input_shape_dict="{'x':[-1,3,-1,-1]}" \ --enable_onnx_checker True paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_cls_infer \ --model_filename ch_ppocr_mobile_v2.0_cls_infer/inference.pdmodel \ --params_filename ch_ppocr_mobile_v2.0_cls_infer/inference.pdiparams \ --save_file ./inferencecls_onnx/model.onnx \ --opset_version 10 \ --input_shape_dict="{'x':[-1,3,-1,-1]}" \ --enable_onnx_checker True ``` After execution, the ONNX model will be saved in `./inference/det_onnx/`, `./inference/rec_onnx/`, `./inference/cls_onnx/` paths respectively * Note: For the OCR model, the conversion process must be in the form of dynamic shape, that is, add the option --input_shape_dict="{'x': [-1, 3, -1, -1]}", otherwise the prediction result may be the same as Predicting directly with Paddle is slightly different. In addition, the following models do not currently support conversion to ONNX models: NRTR, SAR, RARE, SRN ## 3. prediction Take the Chinese OCR model as an example, use **ONNXRuntime** to predict and execute the following commands: ``` python3.7 tools/infer/predict_system.py --use_gpu=False --use_onnx=True \ --det_model_dir=./inference/det_onnx/model.onnx \ --rec_model_dir=./inference/rec_onnx/model.onnx \ --cls_model_dir=./inference/cls_onnx/model.onnx \ --image_dir=./deploy/lite/imgs/lite_demo.png ``` Taking the Chinese OCR model as an example, use **Paddle Inference** to predict and execute the following commands: ``` python3.7 tools/infer/predict_system.py --use_gpu=False \ --cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \ --rec_model_dir=./inference/ch_PP-OCRv3_rec_infer \ --det_model_dir=./inference/ch_PP-OCRv3_det_infer \ --image_dir=./deploy/lite/imgs/lite_demo.png ``` After executing the command, the predicted identification information will be printed out in the terminal, and the visualization results will be saved under `./inference_results/`. ONNXRuntime result:
Paddle Inference result:
Using ONNXRuntime to predict, terminal output: ``` [2022/02/22 17:48:27] root DEBUG: dt_boxes num : 38, elapse : 0.043187856674194336 [2022/02/22 17:48:27] root DEBUG: rec_res num : 38, elapse : 0.592170000076294 [2022/02/22 17:48:27] root DEBUG: 0 Predict time of ./deploy/lite/imgs/lite_demo.png: 0.642s [2022/02/22 17:48:27] root DEBUG: The, 0.984 [2022/02/22 17:48:27] root DEBUG: visualized, 0.882 [2022/02/22 17:48:27] root DEBUG: etect18片, 0.720 [2022/02/22 17:48:27] root DEBUG: image saved in./vis.jpg, 0.947 [2022/02/22 17:48:27] root DEBUG: 纯臻营养护发素0.993604, 0.996 [2022/02/22 17:48:27] root DEBUG: 产品信息/参数, 0.922 [2022/02/22 17:48:27] root DEBUG: 0.992728, 0.914 [2022/02/22 17:48:27] root DEBUG: (45元/每公斤,100公斤起订), 0.926 [2022/02/22 17:48:27] root DEBUG: 0.97417, 0.977 [2022/02/22 17:48:27] root DEBUG: 每瓶22元,1000瓶起订)0.993976, 0.962 [2022/02/22 17:48:27] root DEBUG: 【品牌】:代加工方式/0EMODM, 0.945 [2022/02/22 17:48:27] root DEBUG: 0.985133, 0.980 [2022/02/22 17:48:27] root DEBUG: 【品名】:纯臻营养护发素, 0.921 [2022/02/22 17:48:27] root DEBUG: 0.995007, 0.883 [2022/02/22 17:48:27] root DEBUG: 【产品编号】:YM-X-30110.96899, 0.955 [2022/02/22 17:48:27] root DEBUG: 【净含量】:220ml, 0.943 [2022/02/22 17:48:27] root DEBUG: Q.996577, 0.932 [2022/02/22 17:48:27] root DEBUG: 【适用人群】:适合所有肤质, 0.913 [2022/02/22 17:48:27] root DEBUG: 0.995842, 0.969 [2022/02/22 17:48:27] root DEBUG: 【主要成分】:鲸蜡硬脂醇、燕麦B-葡聚, 0.883 [2022/02/22 17:48:27] root DEBUG: 0.961928, 0.964 [2022/02/22 17:48:27] root DEBUG: 10, 0.812 [2022/02/22 17:48:27] root DEBUG: 糖、椰油酰胺丙基甜菜碱、泛醒, 0.866 [2022/02/22 17:48:27] root DEBUG: 0.925898, 0.943 [2022/02/22 17:48:27] root DEBUG: (成品包材), 0.974 [2022/02/22 17:48:27] root DEBUG: 0.972573, 0.961 [2022/02/22 17:48:27] root DEBUG: 【主要功能】:可紧致头发磷层,从而达到, 0.936 [2022/02/22 17:48:27] root DEBUG: 0.994448, 0.952 [2022/02/22 17:48:27] root DEBUG: 13, 0.998 [2022/02/22 17:48:27] root DEBUG: 即时持久改善头发光泽的效果,给干燥的头, 0.994 [2022/02/22 17:48:27] root DEBUG: 0.990198, 0.975 [2022/02/22 17:48:27] root DEBUG: 14, 0.977 [2022/02/22 17:48:27] root DEBUG: 发足够的滋养, 0.991 [2022/02/22 17:48:27] root DEBUG: 0.997668, 0.918 [2022/02/22 17:48:27] root DEBUG: 花费了0.457335秒, 0.901 [2022/02/22 17:48:27] root DEBUG: The visualized image saved in ./inference_results/lite_demo.png [2022/02/22 17:48:27] root INFO: The predict total time is 0.7003889083862305 ``` Using Paddle Inference to predict, terminal output: ``` [2022/02/22 17:47:25] root DEBUG: dt_boxes num : 38, elapse : 0.11791276931762695 [2022/02/22 17:47:27] root DEBUG: rec_res num : 38, elapse : 2.6206860542297363 [2022/02/22 17:47:27] root DEBUG: 0 Predict time of ./deploy/lite/imgs/lite_demo.png: 2.746s [2022/02/22 17:47:27] root DEBUG: The, 0.984 [2022/02/22 17:47:27] root DEBUG: visualized, 0.882 [2022/02/22 17:47:27] root DEBUG: etect18片, 0.720 [2022/02/22 17:47:27] root DEBUG: image saved in./vis.jpg, 0.947 [2022/02/22 17:47:27] root DEBUG: 纯臻营养护发素0.993604, 0.996 [2022/02/22 17:47:27] root DEBUG: 产品信息/参数, 0.922 [2022/02/22 17:47:27] root DEBUG: 0.992728, 0.914 [2022/02/22 17:47:27] root DEBUG: (45元/每公斤,100公斤起订), 0.926 [2022/02/22 17:47:27] root DEBUG: 0.97417, 0.977 [2022/02/22 17:47:27] root DEBUG: 每瓶22元,1000瓶起订)0.993976, 0.962 [2022/02/22 17:47:27] root DEBUG: 【品牌】:代加工方式/0EMODM, 0.945 [2022/02/22 17:47:27] root DEBUG: 0.985133, 0.980 [2022/02/22 17:47:27] root DEBUG: 【品名】:纯臻营养护发素, 0.921 [2022/02/22 17:47:27] root DEBUG: 0.995007, 0.883 [2022/02/22 17:47:27] root DEBUG: 【产品编号】:YM-X-30110.96899, 0.955 [2022/02/22 17:47:27] root DEBUG: 【净含量】:220ml, 0.943 [2022/02/22 17:47:27] root DEBUG: Q.996577, 0.932 [2022/02/22 17:47:27] root DEBUG: 【适用人群】:适合所有肤质, 0.913 [2022/02/22 17:47:27] root DEBUG: 0.995842, 0.969 [2022/02/22 17:47:27] root DEBUG: 【主要成分】:鲸蜡硬脂醇、燕麦B-葡聚, 0.883 [2022/02/22 17:47:27] root DEBUG: 0.961928, 0.964 [2022/02/22 17:47:27] root DEBUG: 10, 0.812 [2022/02/22 17:47:27] root DEBUG: 糖、椰油酰胺丙基甜菜碱、泛醒, 0.866 [2022/02/22 17:47:27] root DEBUG: 0.925898, 0.943 [2022/02/22 17:47:27] root DEBUG: (成品包材), 0.974 [2022/02/22 17:47:27] root DEBUG: 0.972573, 0.961 [2022/02/22 17:47:27] root DEBUG: 【主要功能】:可紧致头发磷层,从而达到, 0.936 [2022/02/22 17:47:27] root DEBUG: 0.994448, 0.952 [2022/02/22 17:47:27] root DEBUG: 13, 0.998 [2022/02/22 17:47:27] root DEBUG: 即时持久改善头发光泽的效果,给干燥的头, 0.994 [2022/02/22 17:47:27] root DEBUG: 0.990198, 0.975 [2022/02/22 17:47:27] root DEBUG: 14, 0.977 [2022/02/22 17:47:27] root DEBUG: 发足够的滋养, 0.991 [2022/02/22 17:47:27] root DEBUG: 0.997668, 0.918 [2022/02/22 17:47:27] root DEBUG: 花费了0.457335秒, 0.901 [2022/02/22 17:47:27] root DEBUG: The visualized image saved in ./inference_results/lite_demo.png [2022/02/22 17:47:27] root INFO: The predict total time is 2.8338775634765625 ```