Global: debug: false use_gpu: true epoch_num: 100 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_ppocr_v3_rotnet save_epoch_step: 3 eval_batch_step: [0, 2000] cal_metric_during_train: true pretrained_model: null checkpoints: null save_inference_dir: null use_visualdl: false infer_img: doc/imgs_words/ch/word_1.jpg character_dict_path: ppocr/utils/ppocr_keys_v1.txt max_text_length: 25 infer_mode: false use_space_char: true save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 regularizer: name: L2 factor: 1.0e-05 Architecture: model_type: cls algorithm: CLS Transform: null Backbone: name: MobileNetV1Enhance scale: 0.5 last_conv_stride: [1, 2] last_pool_type: avg Neck: Head: name: ClsHead class_dim: 4 Loss: name: ClsLoss main_indicator: acc PostProcess: name: ClsPostProcess Metric: name: ClsMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: ./train_data label_file_list: - ./train_data/train_list.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - RecAug: use_tia: False - RandAugment: - SSLRotateResize: image_shape: [3, 48, 320] - KeepKeys: keep_keys: ["image", "label"] loader: collate_fn: "SSLRotateCollate" shuffle: true batch_size_per_card: 32 drop_last: true num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data label_file_list: - ./train_data/val_list.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - SSLRotateResize: image_shape: [3, 48, 320] - KeepKeys: keep_keys: ["image", "label"] loader: collate_fn: "SSLRotateCollate" shuffle: false drop_last: false batch_size_per_card: 64 num_workers: 8 profiler_options: null