from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn class SARLoss(nn.Layer): def __init__(self, **kwargs): super(SARLoss, self).__init__() self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean", ignore_index=96) def forward(self, predicts, batch): predict = predicts[:, :-1, :] # ignore last index of outputs to be in same seq_len with targets label = batch[1].astype("int64")[:, 1:] # ignore first index of target in loss calculation batch_size, num_steps, num_classes = predict.shape[0], predict.shape[ 1], predict.shape[2] assert len(label.shape) == len(list(predict.shape)) - 1, \ "The target's shape and inputs's shape is [N, d] and [N, num_steps]" inputs = paddle.reshape(predict, [-1, num_classes]) targets = paddle.reshape(label, [-1]) loss = self.loss_func(inputs, targets) return {'loss': loss}