#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import math import cv2 import numpy as np import random from ppocr.utils.utility import initial_logger logger = initial_logger() from .text_image_aug.augment import tia_distort, tia_stretch, tia_perspective def get_bounding_box_rect(pos): left = min(pos[0]) right = max(pos[0]) top = min(pos[1]) bottom = max(pos[1]) return [left, top, right, bottom] def resize_norm_img(img, image_shape): imgC, imgH, imgW = image_shape h = img.shape[0] w = img.shape[1] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') if image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def resize_norm_img_chinese(img, image_shape): imgC, imgH, imgW = image_shape # todo: change to 0 and modified image shape max_wh_ratio = 0 h, w = img.shape[0], img.shape[1] ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, ratio) imgW = int(32 * max_wh_ratio) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') if image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def get_img_data(value): """get_img_data""" if not value: return None imgdata = np.frombuffer(value, dtype='uint8') if imgdata is None: return None imgori = cv2.imdecode(imgdata, 1) if imgori is None: return None return imgori def flag(): """ flag """ return 1 if random.random() > 0.5000001 else -1 def cvtColor(img): """ cvtColor """ hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) delta = 0.001 * random.random() * flag() hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta) new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return new_img def blur(img): """ blur """ h, w, _ = img.shape if h > 10 and w > 10: return cv2.GaussianBlur(img, (5, 5), 1) else: return img def jitter(img): """ jitter """ w, h, _ = img.shape if h > 10 and w > 10: thres = min(w, h) s = int(random.random() * thres * 0.01) src_img = img.copy() for i in range(s): img[i:, i:, :] = src_img[:w - i, :h - i, :] return img else: return img def add_gasuss_noise(image, mean=0, var=0.1): """ Gasuss noise """ noise = np.random.normal(mean, var**0.5, image.shape) out = image + 0.5 * noise out = np.clip(out, 0, 255) out = np.uint8(out) return out def get_crop(image): """ random crop """ h, w, _ = image.shape top_min = 1 top_max = 8 top_crop = int(random.randint(top_min, top_max)) top_crop = min(top_crop, h - 1) crop_img = image.copy() ratio = random.randint(0, 1) if ratio: crop_img = crop_img[top_crop:h, :, :] else: crop_img = crop_img[0:h - top_crop, :, :] return crop_img class Config: """ Config """ def __init__(self, ): self.anglex = random.random() * 30 self.angley = random.random() * 15 self.anglez = random.random() * 10 self.fov = 42 self.r = 0 self.shearx = random.random() * 0.3 self.sheary = random.random() * 0.05 self.borderMode = cv2.BORDER_REPLICATE def make(self, w, h, ang): """ make """ self.anglex = random.random() * 5 * flag() self.angley = random.random() * 5 * flag() self.anglez = -1 * random.random() * int(ang) * flag() self.fov = 42 self.r = 0 self.shearx = 0 self.sheary = 0 self.borderMode = cv2.BORDER_REPLICATE self.w = w self.h = h self.perspective = True self.stretch = True self.distort = True self.crop = True self.affine = False self.reverse = True self.noise = True self.jitter = True self.blur = True self.color = True def rad(x): """ rad """ return x * np.pi / 180 def get_warpR(config): """ get_warpR """ anglex, angley, anglez, fov, w, h, r = \ config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r if w > 69 and w < 112: anglex = anglex * 1.5 z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2)) # Homogeneous coordinate transformation matrix rx = np.array([[1, 0, 0, 0], [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [ 0, -np.sin(rad(anglex)), np.cos(rad(anglex)), 0, ], [0, 0, 0, 1]], np.float32) ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], [0, 1, 0, 0], [ -np.sin(rad(angley)), 0, np.cos(rad(angley)), 0, ], [0, 0, 0, 1]], np.float32) rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) r = rx.dot(ry).dot(rz) # generate 4 points pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) p1 = np.array([0, 0, 0, 0], np.float32) - pcenter p2 = np.array([w, 0, 0, 0], np.float32) - pcenter p3 = np.array([0, h, 0, 0], np.float32) - pcenter p4 = np.array([w, h, 0, 0], np.float32) - pcenter dst1 = r.dot(p1) dst2 = r.dot(p2) dst3 = r.dot(p3) dst4 = r.dot(p4) list_dst = np.array([dst1, dst2, dst3, dst4]) org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) dst = np.zeros((4, 2), np.float32) # Project onto the image plane dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0] dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1] warpR = cv2.getPerspectiveTransform(org, dst) dst1, dst2, dst3, dst4 = dst r1 = int(min(dst1[1], dst2[1])) r2 = int(max(dst3[1], dst4[1])) c1 = int(min(dst1[0], dst3[0])) c2 = int(max(dst2[0], dst4[0])) try: ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1)) dx = -c1 dy = -r1 T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]]) ret = T1.dot(warpR) except: ratio = 1.0 T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]]) ret = T1 return ret, (-r1, -c1), ratio, dst def get_warpAffine(config): """ get_warpAffine """ anglez = config.anglez rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0], [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32) return rz def warp(img, ang): """ warp """ h, w, _ = img.shape config = Config() config.make(w, h, ang) new_img = img prob = 0.4 if config.distort: img_height, img_width = img.shape[0:2] if random.random() <= prob and img_height >= 20 and img_width >= 20: new_img = tia_distort(new_img, random.randint(3, 6)) if config.stretch: img_height, img_width = img.shape[0:2] if random.random() <= prob and img_height >= 20 and img_width >= 20: new_img = tia_stretch(new_img, random.randint(3, 6)) if config.perspective: if random.random() <= prob: new_img = tia_perspective(new_img) if config.crop: img_height, img_width = img.shape[0:2] if random.random() <= prob and img_height >= 20 and img_width >= 20: new_img = get_crop(new_img) if config.blur: if random.random() <= prob: new_img = blur(new_img) if config.color: if random.random() <= prob: new_img = cvtColor(new_img) if config.jitter: new_img = jitter(new_img) if config.noise: if random.random() <= prob: new_img = add_gasuss_noise(new_img) if config.reverse: if random.random() <= prob: new_img = 255 - new_img return new_img def process_image(img, image_shape, label=None, char_ops=None, loss_type=None, max_text_length=None, tps=None, infer_mode=False, distort=False): if distort: img = warp(img, 10) if infer_mode and char_ops.character_type == "ch" and not tps: norm_img = resize_norm_img_chinese(img, image_shape) else: norm_img = resize_norm_img(img, image_shape) norm_img = norm_img[np.newaxis, :] if label is not None: # char_num = char_ops.get_char_num() text = char_ops.encode(label) if len(text) == 0 or len(text) > max_text_length: logger.info( "Warning in ppocr/data/rec/img_tools.py:line362: Wrong data type." "Excepted string with length between 1 and {}, but " "got '{}'. Label is '{}'".format(max_text_length, len(text), label)) return None else: if loss_type == "ctc": text = text.reshape(-1, 1) return (norm_img, text) elif loss_type == "attention": beg_flag_idx = char_ops.get_beg_end_flag_idx("beg") end_flag_idx = char_ops.get_beg_end_flag_idx("end") beg_text = np.append(beg_flag_idx, text) end_text = np.append(text, end_flag_idx) beg_text = beg_text.reshape(-1, 1) end_text = end_text.reshape(-1, 1) return (norm_img, beg_text, end_text) else: assert False, "Unsupport loss_type %s in process_image"\ % loss_type return (norm_img) def resize_norm_img_srn(img, image_shape): imgC, imgH, imgW = image_shape img_black = np.zeros((imgH, imgW)) im_hei = img.shape[0] im_wid = img.shape[1] if im_wid <= im_hei * 1: img_new = cv2.resize(img, (imgH * 1, imgH)) elif im_wid <= im_hei * 2: img_new = cv2.resize(img, (imgH * 2, imgH)) elif im_wid <= im_hei * 3: img_new = cv2.resize(img, (imgH * 3, imgH)) else: img_new = cv2.resize(img, (imgW, imgH)) img_np = np.asarray(img_new) img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) img_black[:, 0:img_np.shape[1]] = img_np img_black = img_black[:, :, np.newaxis] row, col, c = img_black.shape c = 1 return np.reshape(img_black, (c, row, col)).astype(np.float32) def srn_other_inputs(image_shape, num_heads, max_text_length, char_num): imgC, imgH, imgW = image_shape feature_dim = int((imgH / 8) * (imgW / 8)) encoder_word_pos = np.array(range(0, feature_dim)).reshape( (feature_dim, 1)).astype('int64') gsrm_word_pos = np.array(range(0, max_text_length)).reshape( (max_text_length, 1)).astype('int64') lbl_weight = np.array([int(char_num - 1)] * max_text_length).reshape( (-1, 1)).astype('int64') gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [1, num_heads, 1, 1]) * [-1e9] gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [1, num_heads, 1, 1]) * [-1e9] encoder_word_pos = encoder_word_pos[np.newaxis, :] gsrm_word_pos = gsrm_word_pos[np.newaxis, :] return [ lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2 ] def process_image_srn(img, image_shape, num_heads, max_text_length, label=None, char_ops=None, loss_type=None): norm_img = resize_norm_img_srn(img, image_shape) norm_img = norm_img[np.newaxis, :] char_num = char_ops.get_char_num() [lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ srn_other_inputs(image_shape, num_heads, max_text_length,char_num) if label is not None: text = char_ops.encode(label) if len(text) == 0 or len(text) > max_text_length: return None else: if loss_type == "srn": text_padded = [int(char_num - 1)] * max_text_length for i in range(len(text)): text_padded[i] = text[i] lbl_weight[i] = [1.0] text_padded = np.array(text_padded) text = text_padded.reshape(-1, 1) return (norm_img, text, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight) else: assert False, "Unsupport loss_type %s in process_image"\ % loss_type return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2)