# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import Client import sys import numpy as np import base64 import os import cv2 from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from ocr_reader import OCRReader client = Client() # TODO:load_client need to load more than one client model. # this need to figure out some details. client.load_client_config(sys.argv[1:]) client.connect(["127.0.0.1:9293"]) import paddle test_img_dir = "../../doc/imgs/1.jpg" ocr_reader = OCRReader(char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") def cv2_to_base64(image): return base64.b64encode(image).decode( 'utf8') #data.tostring()).decode('utf8') def _check_image_file(path): img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'} return any([path.lower().endswith(e) for e in img_end]) test_img_list = [] if os.path.isfile(test_img_dir) and _check_image_file(test_img_dir): test_img_list.append(test_img_dir) elif os.path.isdir(test_img_dir): for single_file in os.listdir(test_img_dir): file_path = os.path.join(test_img_dir, single_file) if os.path.isfile(file_path) and _check_image_file(file_path): test_img_list.append(file_path) if len(test_img_list) == 0: raise Exception("not found any img file in {}".format(test_img_dir)) for img_file in test_img_list: with open(img_file, 'rb') as file: image_data = file.read() image = cv2_to_base64(image_data) res_list = [] fetch_map = client.predict(feed={"x": image}, fetch=[], batch=True) print(fetch_map) one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True) for res in one_batch_res: res_list.append(res[0]) res = {"res": str(res_list)} print(res)