# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append('/home/zhoujun20/PaddleOCR') import paddle from paddle import nn from ppocr.modeling.transform import build_transform from ppocr.modeling.backbones import build_backbone from ppocr.modeling.necks import build_neck from ppocr.modeling.heads import build_head __all__ = ['Model'] class Model(nn.Layer): def __init__(self, config): """ Detection module for OCR. args: config (dict): the super parameters for module. """ super(Model, self).__init__() algorithm = config['algorithm'] self.type = config['type'] self.model_name = '{}_{}'.format(self.type, algorithm) in_channels = config.get('in_channels', 3) # build transfrom, # for rec, transfrom can be TPS,None # for det and cls, transfrom shoule to be None, # if you make model differently, you can use transfrom in det and cls if 'Transform' not in config or config['Transform'] is None: self.use_transform = False else: self.use_transform = True config['Transform']['in_channels'] = in_channels self.transform = build_transform(config['Transform']) in_channels = self.transform.out_channels # build backbone, backbone is need for del, rec and cls config["Backbone"]['in_channels'] = in_channels self.backbone = build_backbone(config["Backbone"], self.type) in_channels = self.backbone.out_channels # build neck # for rec, neck can be cnn,rnn or reshape(None) # for det, neck can be FPN, BIFPN and so on. # for cls, neck should be none if 'Neck' not in config or config['Neck'] is None: self.use_neck = False else: self.use_neck = True config['Neck']['in_channels'] = in_channels self.neck = build_neck(config['Neck']) in_channels = self.neck.out_channels # # build head, head is need for del, rec and cls config["Head"]['in_channels'] = in_channels self.head = build_head(config["Head"]) # @paddle.jit.to_static def forward(self, x): if self.use_transform: x = self.transform(x) x = self.backbone(x) if self.use_neck: x = self.neck(x) x = self.head(x) return x def check_static(): import numpy as np from ppocr.utils.save_load import load_dygraph_pretrain from ppocr.utils.logging import get_logger from tools import program config = program.load_config('configs/det/det_r50_vd_db.yml') # import cv2 # data = cv2.imread('doc/imgs/1.jpg') # data = normalize(data) logger = get_logger() data = np.zeros((1, 3, 640, 640), dtype=np.float32) paddle.disable_static() config['Architecture']['in_channels'] = 3 config['Architecture']["Head"]['out_channels'] = 6624 model = Model(config['Architecture']) model.eval() load_dygraph_pretrain( model, logger, '/Users/zhoujun20/Desktop/code/PaddleOCR/db/db', load_static_weights=True) x = paddle.to_variable(data) y = model(x) for y1 in y: print(y1.shape) # # # from matplotlib import pyplot as plt # # plt.imshow(y.numpy()) # # plt.show() static_out = np.load('/Users/zhoujun20/Desktop/code/PaddleOCR/db/db.npy') diff = y.numpy() - static_out print(y.shape, static_out.shape, diff.mean()) if __name__ == '__main__': check_static()