# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import utility from ppocr.utils.utility import initial_logger logger = initial_logger() import cv2 import predict_system import copy import numpy as np import math import time import json import os from PIL import Image, ImageDraw, ImageFont from tools.infer.utility import draw_ocr from ppocr.utils.utility import get_image_file_list if __name__ == "__main__": args = utility.parse_args() text_sys = predict_system.TextSystem(args) if not os.path.exists(args.image_dir): raise Exception("{} not exists !!".format(args.image_dir)) image_file_list = get_image_file_list(args.image_dir) total_time_all = 0 count = 0 save_path = "./inference_output/predict.txt" if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) fout = open(save_path, "wb") for image_name in image_file_list: image_file = image_name img = cv2.imread(image_file) if img is None: logger.info("error in loading image:{}".format(image_file)) continue count += 1 total_time = 0 starttime = time.time() dt_boxes, rec_res = text_sys(img) elapse = time.time() - starttime total_time_all += elapse print("Predict time of %s(%d): %.3fs" % (image_file, count, elapse)) dt_num = len(dt_boxes) bbox_list = [] for dno in range(dt_num): box = dt_boxes[dno] text, score = rec_res[dno] points = [] for tno in range(len(box)): points.append([box[tno][0] * 1.0, box[tno][1] * 1.0]) bbox_list.append({ "transcription": text, "points": points, "scores": score * 1.0 }) # draw predict box and text in image # and save drawed image in save_path image = Image.open(image_file) boxes, txts, scores = [], [], [] for dic in bbox_list: boxes.append(dic['points']) txts.append(dic['transcription']) scores.append(round(dic['scores'], 3)) new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True) draw_img_save = os.path.join( os.path.dirname(save_path), "inference_draw", os.path.basename(image_file)) if not os.path.exists(os.path.dirname(draw_img_save)): os.makedirs(os.path.dirname(draw_img_save)) cv2.imwrite(draw_img_save, new_img[:, :, ::-1]) print("drawed img saved in {}".format(draw_img_save)) # save predicted results in txt file otstr = image_name + "\t" + json.dumps(bbox_list) + "\n" fout.write(otstr.encode('utf-8')) avg_time = total_time_all / count logger.info("avg_time: {0}".format(avg_time)) logger.info("avg_fps: {0}".format(1.0 / avg_time)) fout.close()