Global: use_gpu: true epoch_num: 40 log_smooth_window: 20 print_batch_step: 5 save_model_dir: ./output/table_mv3/ save_epoch_step: 3 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 400] # if pretrained_model is saved in static mode, load_static_weights must set to True cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words/ch/word_1.jpg # for data or label process character_dict_path: ppocr/utils/dict/table_structure_dict.txt character_type: en max_text_length: 100 max_elem_length: 800 max_cell_num: 500 infer_mode: False process_total_num: 0 process_cut_num: 0 Optimizer: name: Adam beta1: 0.9 beta2: 0.999 clip_norm: 5.0 lr: learning_rate: 0.0001 regularizer: name: 'L2' factor: 0.00000 Architecture: model_type: table algorithm: TableAttn Backbone: name: MobileNetV3 scale: 1.0 model_name: large Head: name: TableAttentionHead # AttentionHead hidden_size: 256 # l2_decay: 0.00001 # loc_type: 1 loc_type: 2 Loss: name: TableAttentionLoss structure_weight: 100.0 loc_weight: 10000.0 PostProcess: name: TableLabelDecode Metric: name: TableMetric main_indicator: acc Train: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/train/ label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ResizeTableImage: max_len: 488 - TableLabelEncode: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: - ToCHWImage: - KeepKeys: keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask'] loader: shuffle: True batch_size_per_card: 32 drop_last: True num_workers: 4 Eval: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/val/ label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ResizeTableImage: max_len: 488 - TableLabelEncode: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: - ToCHWImage: - KeepKeys: keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask'] loader: shuffle: False drop_last: False batch_size_per_card: 16 num_workers: 4