Global: use_gpu: True epoch_num: &epoch_num 200 log_smooth_window: 10 print_batch_step: 10 save_model_dir: ./output/ser_layoutxlm_sroie save_epoch_step: 2000 # evaluation is run every 10 iterations after the 0th iteration eval_batch_step: [ 0, 200 ] cal_metric_during_train: False save_inference_dir: use_visualdl: False seed: 2022 infer_img: train_data/SROIE/test/X00016469670.jpg save_res_path: res_img_aug_with_gt Architecture: model_type: vqa algorithm: &algorithm "LayoutXLM" Transform: Backbone: name: LayoutXLMForSer pretrained: True checkpoints: num_classes: &num_classes 9 Loss: name: VQASerTokenLayoutLMLoss num_classes: *num_classes Optimizer: name: AdamW beta1: 0.9 beta2: 0.999 lr: name: Linear learning_rate: 0.00005 epochs: *epoch_num warmup_epoch: 2 regularizer: name: L2 factor: 0.00000 PostProcess: name: VQASerTokenLayoutLMPostProcess class_path: &class_path ./train_data/SROIE/class_list.txt Metric: name: VQASerTokenMetric main_indicator: hmean Train: dataset: name: SimpleDataSet data_dir: ./train_data/SROIE/train label_file_list: - ./train_data/SROIE/train.txt ratio_list: [ 1.0 ] transforms: - DecodeImage: # load image img_mode: RGB channel_first: False - VQATokenLabelEncode: # Class handling label contains_re: False algorithm: *algorithm class_path: *class_path - VQATokenPad: max_seq_len: &max_seq_len 512 return_attention_mask: True - VQASerTokenChunk: max_seq_len: *max_seq_len - Resize: size: [224,224] - NormalizeImage: scale: 1 mean: [ 123.675, 116.28, 103.53 ] std: [ 58.395, 57.12, 57.375 ] order: 'hwc' - ToCHWImage: - KeepKeys: # dataloader will return list in this order keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] loader: shuffle: True drop_last: False batch_size_per_card: 8 num_workers: 4 Eval: dataset: name: SimpleDataSet data_dir: train_data/SROIE/test label_file_list: - ./train_data/SROIE/test.txt transforms: - DecodeImage: # load image img_mode: RGB channel_first: False - VQATokenLabelEncode: # Class handling label contains_re: False algorithm: *algorithm class_path: *class_path - VQATokenPad: max_seq_len: *max_seq_len return_attention_mask: True - VQASerTokenChunk: max_seq_len: *max_seq_len - Resize: size: [224,224] - NormalizeImage: scale: 1 mean: [ 123.675, 116.28, 103.53 ] std: [ 58.395, 57.12, 57.375 ] order: 'hwc' - ToCHWImage: - KeepKeys: # dataloader will return list in this order keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] loader: shuffle: False drop_last: False batch_size_per_card: 8 num_workers: 4