# PP-Structure 快速开始
- [1. 安装依赖包](#1-安装依赖包)
- [2. 便捷使用](#2-便捷使用)
- [2.1 命令行使用](#21-命令行使用)
- [2.1.1 图像方向分类+版面分析+表格识别](#211-图像方向分类版面分析表格识别)
- [2.1.1 版面分析+表格识别](#211-版面分析表格识别)
- [2.1.3 版面分析](#213-版面分析)
- [2.1.4 表格识别](#214-表格识别)
- [2.1.5 DocVQA](#215-docvqa)
- [2.2 代码使用](#22-代码使用)
- [2.2.1 图像方向分类版面分析表格识别](#221-图像方向分类版面分析表格识别)
- [2.2.2 版面分析+表格识别](#222-版面分析表格识别)
- [2.2.3 版面分析](#223-版面分析)
- [2.2.4 表格识别](#224-表格识别)
- [2.2.5 DocVQA](#225-docvqa)
- [2.3 返回结果说明](#23-返回结果说明)
- [2.3.1 版面分析+表格识别](#231-版面分析表格识别)
- [2.3.2 DocVQA](#232-docvqa)
- [2.4 参数说明](#24-参数说明)
## 1. 安装依赖包
```bash
# 安装 paddleocr,推荐使用2.5+版本
pip3 install "paddleocr>=2.5"
# 安装 DocVQA依赖包paddlenlp(如不需要DocVQA功能,可跳过)
pip install paddlenlp
```
## 2. 便捷使用
### 2.1 命令行使用
#### 2.1.1 图像方向分类+版面分析+表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --image_orientation=true
```
#### 2.1.1 版面分析+表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
```
#### 2.1.3 版面分析
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
```
#### 2.1.4 表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```
#### 2.1.5 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
### 2.2 代码使用
#### 2.2.1 图像方向分类版面分析表格识别
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True, image_orientation=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
#### 2.2.2 版面分析+表格识别
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
#### 2.2.3 版面分析
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(table=False, ocr=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
```
#### 2.2.4 表格识别
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(layout=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
```
#### 2.2.5 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
### 2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下
#### 2.3.1 版面分析+表格识别
```shell
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
dict 里各个字段说明如下
| 字段 | 说明|
| --- |---|
|type| 图片区域的类型 |
|bbox| 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]|
|res| 图片区域的OCR或表格识别结果。
表格: 一个dict,字段说明如下
`html`: 表格的HTML字符串
在代码使用模式下,前向传入return_ocr_result_in_table=True可以拿到表格中每个文本的检测识别结果,对应为如下字段:
`boxes`: 文本检测坐标
`rec_res`: 文本识别结果。
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。
```
/output/table/1/
└─ res.txt
└─ [454, 360, 824, 658].xlsx 表格识别结果
└─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
└─ [17, 361, 404, 711].xlsx 表格识别结果
```
#### 2.3.2 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
### 2.4 参数说明
| 字段 | 说明 | 默认值 |
|---|---|---|
| output | 结果保存地址 | ./output/table |
| table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址| None |
| table_char_dict_path | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
| merge_no_span_structure | 表格识别模型中,是否对'\