# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) import argparse import paddle from paddle.jit import to_static from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.utils.save_load import init_model from ppocr.utils.logging import get_logger from tools.program import load_config, merge_config, ArgsParser def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", help="configuration file to use") parser.add_argument( "-o", "--output_path", type=str, default='./output/infer/') return parser.parse_args() def main(): FLAGS = ArgsParser().parse_args() config = load_config(FLAGS.config) merge_config(FLAGS.opt) logger = get_logger() # build post process post_process_class = build_post_process(config['PostProcess'], config['Global']) # build model # for rec algorithm if hasattr(post_process_class, 'character'): char_num = len(getattr(post_process_class, 'character')) config['Architecture']["Head"]['out_channels'] = char_num model = build_model(config['Architecture']) init_model(config, model, logger) model.eval() save_path = '{}/inference'.format(config['Global']['save_inference_dir']) if config['Architecture']['algorithm'] == "SRN": other_shape = [ paddle.static.InputSpec( shape=[None, 1, 64, 256], dtype='float32'), [ paddle.static.InputSpec( shape=[None, 256, 1], dtype="int64"), paddle.static.InputSpec( shape=[None, 25, 1], dtype="int64"), paddle.static.InputSpec( shape=[None, 8, 25, 25], dtype="int64"), paddle.static.InputSpec( shape=[None, 8, 25, 25], dtype="int64") ] ] model = to_static(model, input_spec=other_shape) else: infer_shape = [3, -1, -1] if config['Architecture']['model_type'] == "rec": infer_shape = [3, 32, -1] # for rec model, H must be 32 if 'Transform' in config['Architecture'] and config['Architecture'][ 'Transform'] is not None and config['Architecture'][ 'Transform']['name'] == 'TPS': logger.info( 'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training' ) infer_shape[-1] = 100 model = to_static( model, input_spec=[ paddle.static.InputSpec( shape=[None] + infer_shape, dtype='float32') ]) paddle.jit.save(model, save_path) logger.info('inference model is saved to {}'.format(save_path)) if __name__ == "__main__": main()