# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import string import json from ppocr.utils.logging import get_logger class ClsLabelEncode(object): def __init__(self, label_list, **kwargs): self.label_list = label_list def __call__(self, data): label = data['label'] if label not in self.label_list: return None label = self.label_list.index(label) data['label'] = label return data class DetLabelEncode(object): def __init__(self, **kwargs): pass def __call__(self, data): label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) if len(boxes) == 0: return None boxes = self.expand_points_num(boxes) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['texts'] = txts data['ignore_tags'] = txt_tags return data def order_points_clockwise(self, pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def expand_points_num(self, boxes): max_points_num = 0 for box in boxes: if len(box) > max_points_num: max_points_num = len(box) ex_boxes = [] for box in boxes: ex_box = box + [box[-1]] * (max_points_num - len(box)) ex_boxes.append(ex_box) return ex_boxes class BaseRecLabelEncode(object): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False): self.max_text_len = max_text_length self.beg_str = "sos" self.end_str = "eos" self.lower = False if character_dict_path is None: logger = get_logger() logger.warning( "The character_dict_path is None, model can only recognize number and lower letters" ) self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) self.lower = True else: self.character_str = "" with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str += line if use_space_char: self.character_str += " " dict_character = list(self.character_str) dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): return dict_character def encode(self, text): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ if len(text) == 0 or len(text) > self.max_text_len: return None if self.lower: text = text.lower() text_list = [] for char in text: if char not in self.dict: # logger = get_logger() # logger.warning('{} is not in dict'.format(char)) continue text_list.append(self.dict[char]) if len(text_list) == 0: return None return text_list class NRTRLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(NRTRLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len - 1: return None data['length'] = np.array(len(text)) text.insert(0, 2) text.append(3) text = text + [0] * (self.max_text_len - len(text)) data['label'] = np.array(text) return data def add_special_char(self, dict_character): dict_character = ['blank', '', '', ''] + dict_character return dict_character class CTCLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(CTCLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None data['length'] = np.array(len(text)) text = text + [0] * (self.max_text_len - len(text)) data['label'] = np.array(text) label = [0] * len(self.character) for x in text: label[x] += 1 data['label_ace'] = np.array(label) return data def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character class E2ELabelEncodeTest(BaseRecLabelEncode): def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(E2ELabelEncodeTest, self).__init__( max_text_length, character_dict_path, use_space_char) def __call__(self, data): import json padnum = len(self.dict) label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['ignore_tags'] = txt_tags temp_texts = [] for text in txts: text = text.lower() text = self.encode(text) if text is None: return None text = text + [padnum] * (self.max_text_len - len(text) ) # use 36 to pad temp_texts.append(text) data['texts'] = np.array(temp_texts) return data class E2ELabelEncodeTrain(object): def __init__(self, **kwargs): pass def __call__(self, data): import json label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['texts'] = txts data['ignore_tags'] = txt_tags return data class AttnLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(AttnLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): self.beg_str = "sos" self.end_str = "eos" dict_character = [self.beg_str] + dict_character + [self.end_str] return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len: return None data['length'] = np.array(len(text)) text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len - len(text) - 2) data['label'] = np.array(text) return data def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class SEEDLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(SEEDLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): self.end_str = "eos" dict_character = dict_character + [self.end_str] return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len: return None data['length'] = np.array(len(text)) + 1 # conclude eos text = text + [len(self.character) - 1] * (self.max_text_len - len(text) ) data['label'] = np.array(text) return data class SRNLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length=25, character_dict_path=None, use_space_char=False, **kwargs): super(SRNLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): dict_character = dict_character + [self.beg_str, self.end_str] return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) char_num = len(self.character) if text is None: return None if len(text) > self.max_text_len: return None data['length'] = np.array(len(text)) text = text + [char_num - 1] * (self.max_text_len - len(text)) data['label'] = np.array(text) return data def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class TableLabelEncode(object): """ Convert between text-label and text-index """ def __init__(self, max_text_length, max_elem_length, max_cell_num, character_dict_path, span_weight=1.0, **kwargs): self.max_text_length = max_text_length self.max_elem_length = max_elem_length self.max_cell_num = max_cell_num list_character, list_elem = self.load_char_elem_dict( character_dict_path) list_character = self.add_special_char(list_character) list_elem = self.add_special_char(list_elem) self.dict_character = {} for i, char in enumerate(list_character): self.dict_character[char] = i self.dict_elem = {} for i, elem in enumerate(list_elem): self.dict_elem[elem] = i self.span_weight = span_weight def load_char_elem_dict(self, character_dict_path): list_character = [] list_elem = [] with open(character_dict_path, "rb") as fin: lines = fin.readlines() substr = lines[0].decode('utf-8').strip("\r\n").split("\t") character_num = int(substr[0]) elem_num = int(substr[1]) for cno in range(1, 1 + character_num): character = lines[cno].decode('utf-8').strip("\r\n") list_character.append(character) for eno in range(1 + character_num, 1 + character_num + elem_num): elem = lines[eno].decode('utf-8').strip("\r\n") list_elem.append(elem) return list_character, list_elem def add_special_char(self, list_character): self.beg_str = "sos" self.end_str = "eos" list_character = [self.beg_str] + list_character + [self.end_str] return list_character def get_span_idx_list(self): span_idx_list = [] for elem in self.dict_elem: if 'span' in elem: span_idx_list.append(self.dict_elem[elem]) return span_idx_list def __call__(self, data): cells = data['cells'] structure = data['structure']['tokens'] structure = self.encode(structure, 'elem') if structure is None: return None elem_num = len(structure) structure = [0] + structure + [len(self.dict_elem) - 1] structure = structure + [0] * (self.max_elem_length + 2 - len(structure) ) structure = np.array(structure) data['structure'] = structure elem_char_idx1 = self.dict_elem[''] elem_char_idx2 = self.dict_elem[' 0: span_weight = len(td_idx_list) * 1.0 / len(span_idx_list) span_weight = min(max(span_weight, 1.0), self.span_weight) for cno in range(len(cells)): if 'bbox' in cells[cno]: bbox = cells[cno]['bbox'].copy() bbox[0] = bbox[0] * 1.0 / img_width bbox[1] = bbox[1] * 1.0 / img_height bbox[2] = bbox[2] * 1.0 / img_width bbox[3] = bbox[3] * 1.0 / img_height td_idx = td_idx_list[cno] bbox_list[td_idx] = bbox bbox_list_mask[td_idx] = 1.0 cand_span_idx = td_idx + 1 if cand_span_idx < (self.max_elem_length + 2): if structure[cand_span_idx] in span_idx_list: structure_mask[cand_span_idx] = span_weight data['bbox_list'] = bbox_list data['bbox_list_mask'] = bbox_list_mask data['structure_mask'] = structure_mask char_beg_idx = self.get_beg_end_flag_idx('beg', 'char') char_end_idx = self.get_beg_end_flag_idx('end', 'char') elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem') elem_end_idx = self.get_beg_end_flag_idx('end', 'elem') data['sp_tokens'] = np.array([ char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length, self.max_elem_length, self.max_cell_num, elem_num ]) return data def encode(self, text, char_or_elem): """convert text-label into text-index. """ if char_or_elem == "char": max_len = self.max_text_length current_dict = self.dict_character else: max_len = self.max_elem_length current_dict = self.dict_elem if len(text) > max_len: return None if len(text) == 0: if char_or_elem == "char": return [self.dict_character['space']] else: return None text_list = [] for char in text: if char not in current_dict: return None text_list.append(current_dict[char]) if len(text_list) == 0: if char_or_elem == "char": return [self.dict_character['space']] else: return None return text_list def get_ignored_tokens(self, char_or_elem): beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem) end_idx = self.get_beg_end_flag_idx("end", char_or_elem) return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end, char_or_elem): if char_or_elem == "char": if beg_or_end == "beg": idx = np.array(self.dict_character[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict_character[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \ % beg_or_end elif char_or_elem == "elem": if beg_or_end == "beg": idx = np.array(self.dict_elem[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict_elem[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \ % beg_or_end else: assert False, "Unsupport type %s in char_or_elem" \ % char_or_elem return idx class SARLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(SARLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): beg_end_str = "" unknown_str = "" padding_str = "" dict_character = dict_character + [unknown_str] self.unknown_idx = len(dict_character) - 1 dict_character = dict_character + [beg_end_str] self.start_idx = len(dict_character) - 1 self.end_idx = len(dict_character) - 1 dict_character = dict_character + [padding_str] self.padding_idx = len(dict_character) - 1 return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len - 1: return None data['length'] = np.array(len(text)) target = [self.start_idx] + text + [self.end_idx] padded_text = [self.padding_idx for _ in range(self.max_text_len)] padded_text[:len(target)] = target data['label'] = np.array(padded_text) return data def get_ignored_tokens(self): return [self.padding_idx]