# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/FangShancheng/ABINet/tree/main/modules """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import ParamAttr from paddle.nn.initializer import KaimingNormal import paddle.nn as nn import paddle.nn.functional as F import numpy as np import math __all__ = ["ResNet45"] def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2D( in_planes, out_planes, kernel_size=1, stride=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) def conv3x3(in_channel, out_channel, stride=1): return nn.Conv2D( in_channel, out_channel, kernel_size=3, stride=stride, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) class BasicBlock(nn.Layer): expansion = 1 def __init__(self, in_channels, channels, stride=1, downsample=None): super().__init__() self.conv1 = conv1x1(in_channels, channels) self.bn1 = nn.BatchNorm2D(channels) self.relu = nn.ReLU() self.conv2 = conv3x3(channels, channels, stride) self.bn2 = nn.BatchNorm2D(channels) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet45(nn.Layer): def __init__(self, block=BasicBlock, layers=[3, 4, 6, 6, 3], in_channels=3): self.inplanes = 32 super(ResNet45, self).__init__() self.conv1 = nn.Conv2D( 3, 32, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn1 = nn.BatchNorm2D(32) self.relu = nn.ReLU() self.layer1 = self._make_layer(block, 32, layers[0], stride=2) self.layer2 = self._make_layer(block, 64, layers[1], stride=1) self.layer3 = self._make_layer(block, 128, layers[2], stride=2) self.layer4 = self._make_layer(block, 256, layers[3], stride=1) self.layer5 = self._make_layer(block, 512, layers[4], stride=1) self.out_channels = 512 # for m in self.modules(): # if isinstance(m, nn.Conv2D): # n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # downsample = True downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) # print(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) # print(x) x = self.layer4(x) x = self.layer5(x) return x