# Linux GPU/CPU 多机多卡训练推理测试 Linux GPU/CPU 多机多卡训练推理测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能。 ## 1. 测试结论汇总 - 训练相关: | 算法名称 | 模型名称 | 多机多卡 | | :----: | :----: | :----: | | PP-OCRv3 | ch_PP-OCRv3_rec | 分布式训练 | - 推理相关: | 算法名称 | 模型名称 | device_CPU | device_GPU | batchsize | | :----: | :----: | :----: | :----: | :----: | | PP-OCRv3 | ch_PP-OCRv3_rec | 支持 | 支持 | 1 | ## 2. 测试流程 运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。 ### 2.1 功能测试 #### 2.1.1 修改配置文件 首先,修改配置文件中的`ip`设置: 假设两台机器的`ip`地址分别为`192.168.0.1`和`192.168.0.2`,则对应的配置文件`gpu_list`字段需要修改为`gpu_list:192.168.0.1,192.168.0.2;0,1`; `ip`地址查看命令为`ifconfig`。 #### 2.1.2 准备数据 运行`prepare.sh`准备数据和模型,以配置文件`test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt`为例,数据准备命令如下所示。 ```shell bash test_tipc/prepare.sh test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt lite_train_lite_infer ``` **注意:** 由于是多机训练,这里需要在所有的节点上均运行启动上述命令,准备数据。 #### 2.1.3 修改起始端口并开始测试 在多机的节点上使用下面的命令设置分布式的起始端口(否则后面运行的时候会由于无法找到运行端口而hang住),一般建议设置在`10000~20000`之间。 ```shell export FLAGS_START_PORT=17000 ``` 以配置文件`test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt`为例,测试方法如下所示。 ```shell bash test_tipc/test_train_inference_python.sh test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt lite_train_lite_infer ``` **注意:** 由于是多机训练,这里需要在所有的节点上均运行启动上述命令进行测试。 #### 2.1.4 输出结果 输出结果如下,表示命令运行成功。 ```bash Run successfully with command - ch_PP-OCRv3_rec - python3.7 -m paddle.distributed.launch --ips=192.168.0.1,192.168.0.2 --gpus=0,1 tools/train.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o Global.use_gpu=True Global.save_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2 Global.epoch_num=3 Global.auto_cast=fp32 Train.loader.batch_size_per_card=16 ! ...... Run successfully with command - ch_PP-OCRv3_rec - python3.7 tools/infer/predict_rec.py --rec_image_shape="3,48,320" --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --rec_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2/Student --rec_batch_num=1 --image_dir=./inference/rec_inference --benchmark=True --precision=fp32 > ./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 ! ``` 在开启benchmark参数时,可以得到测试的详细数据,包含运行环境信息(系统版本、CUDA版本、CUDNN版本、驱动版本),Paddle版本信息,参数设置信息(运行设备、线程数、是否开启内存优化等),模型信息(模型名称、精度),数据信息(batchsize、是否为动态shape等),性能信息(CPU,GPU的占用、运行耗时、预处理耗时、推理耗时、后处理耗时),内容如下所示: ``` [2022/06/02 22:53:35] ppocr INFO: [2022/06/02 22:53:35] ppocr INFO: ---------------------- Env info ---------------------- [2022/06/02 22:53:35] ppocr INFO: OS_version: Ubuntu 16.04 [2022/06/02 22:53:35] ppocr INFO: CUDA_version: 10.1.243 [2022/06/02 22:53:35] ppocr INFO: CUDNN_version: 7.6.5 [2022/06/02 22:53:35] ppocr INFO: drivier_version: 460.32.03 [2022/06/02 22:53:35] ppocr INFO: ---------------------- Paddle info ---------------------- [2022/06/02 22:53:35] ppocr INFO: paddle_version: 2.3.0-rc0 [2022/06/02 22:53:35] ppocr INFO: paddle_commit: 5d4980c052583fec022812d9c29460aff7cdc18b [2022/06/02 22:53:35] ppocr INFO: log_api_version: 1.0 [2022/06/02 22:53:35] ppocr INFO: ----------------------- Conf info ----------------------- [2022/06/02 22:53:35] ppocr INFO: runtime_device: cpu [2022/06/02 22:53:35] ppocr INFO: ir_optim: True [2022/06/02 22:53:35] ppocr INFO: enable_memory_optim: True [2022/06/02 22:53:35] ppocr INFO: enable_tensorrt: False [2022/06/02 22:53:35] ppocr INFO: enable_mkldnn: False [2022/06/02 22:53:35] ppocr INFO: cpu_math_library_num_threads: 6 [2022/06/02 22:53:35] ppocr INFO: ----------------------- Model info ---------------------- [2022/06/02 22:53:35] ppocr INFO: model_name: rec [2022/06/02 22:53:35] ppocr INFO: precision: fp32 [2022/06/02 22:53:35] ppocr INFO: ----------------------- Data info ----------------------- [2022/06/02 22:53:35] ppocr INFO: batch_size: 1 [2022/06/02 22:53:35] ppocr INFO: input_shape: dynamic [2022/06/02 22:53:35] ppocr INFO: data_num: 6 [2022/06/02 22:53:35] ppocr INFO: ----------------------- Perf info ----------------------- [2022/06/02 22:53:35] ppocr INFO: cpu_rss(MB): 288.957, gpu_rss(MB): None, gpu_util: None% [2022/06/02 22:53:35] ppocr INFO: total time spent(s): 0.4824 [2022/06/02 22:53:35] ppocr INFO: preprocess_time(ms): 0.1136, inference_time(ms): 79.5877, postprocess_time(ms): 0.6945 ``` 该信息可以在运行log中查看,以上面的`ch_PP-OCRv3_rec`为例,log位置在`./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/results_python.log`。 如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。 **注意:** 由于分布式训练时,仅在`trainer_id=0`所在的节点中保存模型,因此其他的节点中在运行模型导出与推理时会报错,为正常现象。