# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py """ import paddle from paddle import nn from paddle.nn import functional as F import numpy as np from ppocr.utils.iou import iou class PSELoss(nn.Layer): def __init__(self, alpha, ohem_ratio=3, kernel_sample_mask='pred', reduction='sum', eps=1e-6, **kwargs): """Implement PSE Loss. """ super(PSELoss, self).__init__() assert reduction in ['sum', 'mean', 'none'] self.alpha = alpha self.ohem_ratio = ohem_ratio self.kernel_sample_mask = kernel_sample_mask self.reduction = reduction self.eps = eps def forward(self, outputs, labels): predicts = outputs['maps'] predicts = F.interpolate(predicts, scale_factor=4) texts = predicts[:, 0, :, :] kernels = predicts[:, 1:, :, :] gt_texts, gt_kernels, training_masks = labels[1:] # text loss selected_masks = self.ohem_batch(texts, gt_texts, training_masks) loss_text = self.dice_loss(texts, gt_texts, selected_masks) iou_text = iou((texts > 0).astype('int64'), gt_texts, training_masks, reduce=False) losses = dict(loss_text=loss_text, iou_text=iou_text) # kernel loss loss_kernels = [] if self.kernel_sample_mask == 'gt': selected_masks = gt_texts * training_masks elif self.kernel_sample_mask == 'pred': selected_masks = ( F.sigmoid(texts) > 0.5).astype('float32') * training_masks for i in range(kernels.shape[1]): kernel_i = kernels[:, i, :, :] gt_kernel_i = gt_kernels[:, i, :, :] loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i, selected_masks) loss_kernels.append(loss_kernel_i) loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1) iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'), gt_kernels[:, -1, :, :], training_masks * gt_texts, reduce=False) losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel)) loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels losses['loss'] = loss if self.reduction == 'sum': losses = {x: paddle.sum(v) for x, v in losses.items()} elif self.reduction == 'mean': losses = {x: paddle.mean(v) for x, v in losses.items()} return losses def dice_loss(self, input, target, mask): input = F.sigmoid(input) input = input.reshape([input.shape[0], -1]) target = target.reshape([target.shape[0], -1]) mask = mask.reshape([mask.shape[0], -1]) input = input * mask target = target * mask a = paddle.sum(input * target, 1) b = paddle.sum(input * input, 1) + self.eps c = paddle.sum(target * target, 1) + self.eps d = (2 * a) / (b + c) return 1 - d def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3): pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int( paddle.sum( paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5)) .astype('float32'))) if pos_num == 0: selected_mask = training_mask selected_mask = selected_mask.reshape( [1, selected_mask.shape[0], selected_mask.shape[1]]).astype( 'float32') return selected_mask neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32'))) neg_num = int(min(pos_num * ohem_ratio, neg_num)) if neg_num == 0: selected_mask = training_mask selected_mask = selected_mask.view( 1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask neg_score = paddle.masked_select(score, gt_text <= 0.5) neg_score_sorted = paddle.sort(-neg_score) threshold = -neg_score_sorted[neg_num - 1] selected_mask = paddle.logical_and( paddle.logical_or((score >= threshold), (gt_text > 0.5)), (training_mask > 0.5)) selected_mask = selected_mask.reshape( [1, selected_mask.shape[0], selected_mask.shape[1]]).astype( 'float32') return selected_mask def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3): selected_masks = [] for i in range(scores.shape[0]): selected_masks.append( self.ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[i, :, :], ohem_ratio)) selected_masks = paddle.concat(selected_masks, 0).astype('float32') return selected_masks