# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import json import cv2 import numpy as np from copy import deepcopy from PIL import Image import paddle from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification # relative reference from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info def trans_poly_to_bbox(poly): x1 = np.min([p[0] for p in poly]) x2 = np.max([p[0] for p in poly]) y1 = np.min([p[1] for p in poly]) y2 = np.max([p[1] for p in poly]) return [x1, y1, x2, y2] def parse_ocr_info_for_ser(ocr_result): ocr_info = [] for res in ocr_result: ocr_info.append({ "text": res[1][0], "bbox": trans_poly_to_bbox(res[0]), "poly": res[0], }) return ocr_info class SerPredictor(object): def __init__(self, args): self.max_seq_length = args.max_seq_length # init ser token and model self.tokenizer = LayoutXLMTokenizer.from_pretrained( args.model_name_or_path) self.model = LayoutXLMForTokenClassification.from_pretrained( args.model_name_or_path) self.model.eval() # init ocr_engine from paddleocr import PaddleOCR self.ocr_engine = PaddleOCR( rec_model_dir=args.rec_model_dir, det_model_dir=args.det_model_dir, use_angle_cls=False, show_log=False) # init dict label2id_map, self.id2label_map = get_bio_label_maps( args.label_map_path) self.label2id_map_for_draw = dict() for key in label2id_map: if key.startswith("I-"): self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]] else: self.label2id_map_for_draw[key] = label2id_map[key] def __call__(self, img): ocr_result = self.ocr_engine.ocr(img, cls=False) ocr_info = parse_ocr_info_for_ser(ocr_result) inputs = preprocess( tokenizer=self.tokenizer, ori_img=img, ocr_info=ocr_info, max_seq_len=self.max_seq_length) outputs = self.model( input_ids=inputs["input_ids"], bbox=inputs["bbox"], image=inputs["image"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"]) preds = outputs[0] preds = postprocess(inputs["attention_mask"], preds, self.id2label_map) ocr_info = merge_preds_list_with_ocr_info( ocr_info, inputs["segment_offset_id"], preds, self.label2id_map_for_draw) return ocr_info, inputs if __name__ == "__main__": args = parse_args() os.makedirs(args.output_dir, exist_ok=True) # get infer img list infer_imgs = get_image_file_list(args.infer_imgs) # loop for infer ser_engine = SerPredictor(args) with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout: for idx, img_path in enumerate(infer_imgs): print("process: [{}/{}], {}".format(idx, len(infer_imgs), img_path)) img = cv2.imread(img_path) result, _ = ser_engine(img) fout.write(img_path + "\t" + json.dumps( { "ser_resule": result, }, ensure_ascii=False) + "\n") img_res = draw_ser_results(img, result) cv2.imwrite( os.path.join(args.output_dir, os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg"), img_res)