Global: use_gpu: False epoch_num: 400 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec/b3_rare_r34_none_gru/ save_epoch_step: 3 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words/ch/word_1.jpg # for data or label process character_dict_path: character_type: EN_symbol max_text_length: 25 infer_mode: False use_space_char: False save_res_path: ./output/rec/predicts_b3_rare_r34_none_gru.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.0005 regularizer: name: 'L2' factor: 0.00000 Architecture: model_type: rec algorithm: ASTER Transform: name: STN_ON tps_inputsize: [32, 64] tps_outputsize: [32, 100] num_control_points: 20 tps_margins: [0.05,0.05] stn_activation: none Backbone: name: ResNet_ASTER Head: name: AsterHead # AttentionHead sDim: 512 attDim: 512 max_len_labels: 100 Loss: name: AsterLoss PostProcess: name: AttnLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: ./train_data/ic15_data/ label_file_list: ["./train_data/ic15_data/1.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - AttnLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 100] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 2 drop_last: True num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ic15_data/ label_file_list: ["./train_data/ic15_data/1.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - AttnLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 100] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 2 num_workers: 8