# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import json import os import re import traceback def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--filename", type=str, help="The name of log which need to analysis.") parser.add_argument( "--log_with_profiler", type=str, help="The path of train log with profiler") parser.add_argument( "--profiler_path", type=str, help="The path of profiler timeline log.") parser.add_argument( "--keyword", type=str, help="Keyword to specify analysis data") parser.add_argument( "--separator", type=str, default=None, help="Separator of different field in log") parser.add_argument( '--position', type=int, default=None, help='The position of data field') parser.add_argument( '--range', type=str, default="", help='The range of data field to intercept') parser.add_argument( '--base_batch_size', type=int, help='base_batch size on gpu') parser.add_argument( '--skip_steps', type=int, default=0, help='The number of steps to be skipped') parser.add_argument( '--model_mode', type=int, default=-1, help='Analysis mode, default value is -1') parser.add_argument( '--ips_unit', type=str, default=None, help='IPS unit') parser.add_argument( '--model_name', type=str, default=0, help='training model_name, transformer_base') parser.add_argument( '--mission_name', type=str, default=0, help='training mission name') parser.add_argument( '--direction_id', type=int, default=0, help='training direction_id') parser.add_argument( '--run_mode', type=str, default="sp", help='multi process or single process') parser.add_argument( '--index', type=int, default=1, help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}') parser.add_argument( '--gpu_num', type=int, default=1, help='nums of training gpus') args = parser.parse_args() args.separator = None if args.separator == "None" else args.separator return args def _is_number(num): pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$') result = pattern.match(num) if result: return True else: return False class TimeAnalyzer(object): def __init__(self, filename, keyword=None, separator=None, position=None, range="-1"): if filename is None: raise Exception("Please specify the filename!") if keyword is None: raise Exception("Please specify the keyword!") self.filename = filename self.keyword = keyword self.separator = separator self.position = position self.range = range self.records = None self._distil() def _distil(self): self.records = [] with open(self.filename, "r") as f_object: lines = f_object.readlines() for line in lines: if self.keyword not in line: continue try: result = None # Distil the string from a line. line = line.strip() line_words = line.split(self.separator) if self.separator else line.split() if args.position: result = line_words[self.position] else: # Distil the string following the keyword. for i in range(len(line_words) - 1): if line_words[i] == self.keyword: result = line_words[i + 1] break # Distil the result from the picked string. if not self.range: result = result[0:] elif _is_number(self.range): result = result[0: int(self.range)] else: result = result[int(self.range.split(":")[0]): int(self.range.split(":")[1])] self.records.append(float(result)) except Exception as exc: print("line is: {}; separator={}; position={}".format(line, self.separator, self.position)) print("Extract {} records: separator={}; position={}".format(len(self.records), self.separator, self.position)) def _get_fps(self, mode, batch_size, gpu_num, avg_of_records, run_mode, unit=None): if mode == -1 and run_mode == 'sp': assert unit, "Please set the unit when mode is -1." fps = gpu_num * avg_of_records elif mode == -1 and run_mode == 'mp': assert unit, "Please set the unit when mode is -1." fps = gpu_num * avg_of_records #temporarily, not used now print("------------this is mp") elif mode == 0: # s/step -> samples/s fps = (batch_size * gpu_num) / avg_of_records unit = "samples/s" elif mode == 1: # steps/s -> steps/s fps = avg_of_records unit = "steps/s" elif mode == 2: # s/step -> steps/s fps = 1 / avg_of_records unit = "steps/s" elif mode == 3: # steps/s -> samples/s fps = batch_size * gpu_num * avg_of_records unit = "samples/s" elif mode == 4: # s/epoch -> s/epoch fps = avg_of_records unit = "s/epoch" else: ValueError("Unsupported analysis mode.") return fps, unit def analysis(self, batch_size, gpu_num=1, skip_steps=0, mode=-1, run_mode='sp', unit=None): if batch_size <= 0: print("base_batch_size should larger than 0.") return 0, '' if len(self.records) <= skip_steps: # to address the condition which item of log equals to skip_steps print("no records") return 0, '' sum_of_records = 0 sum_of_records_skipped = 0 skip_min = self.records[skip_steps] skip_max = self.records[skip_steps] count = len(self.records) for i in range(count): sum_of_records += self.records[i] if i >= skip_steps: sum_of_records_skipped += self.records[i] if self.records[i] < skip_min: skip_min = self.records[i] if self.records[i] > skip_max: skip_max = self.records[i] avg_of_records = sum_of_records / float(count) avg_of_records_skipped = sum_of_records_skipped / float(count - skip_steps) fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records, run_mode, unit) fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num, avg_of_records_skipped, run_mode, unit) if mode == -1: print("average ips of %d steps, skip 0 step:" % count) print("\tAvg: %.3f %s" % (avg_of_records, fps_unit)) print("\tFPS: %.3f %s" % (fps, fps_unit)) if skip_steps > 0: print("average ips of %d steps, skip %d steps:" % (count, skip_steps)) print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit)) print("\tMin: %.3f %s" % (skip_min, fps_unit)) print("\tMax: %.3f %s" % (skip_max, fps_unit)) print("\tFPS: %.3f %s" % (fps_skipped, fps_unit)) elif mode == 1 or mode == 3: print("average latency of %d steps, skip 0 step:" % count) print("\tAvg: %.3f steps/s" % avg_of_records) print("\tFPS: %.3f %s" % (fps, fps_unit)) if skip_steps > 0: print("average latency of %d steps, skip %d steps:" % (count, skip_steps)) print("\tAvg: %.3f steps/s" % avg_of_records_skipped) print("\tMin: %.3f steps/s" % skip_min) print("\tMax: %.3f steps/s" % skip_max) print("\tFPS: %.3f %s" % (fps_skipped, fps_unit)) elif mode == 0 or mode == 2: print("average latency of %d steps, skip 0 step:" % count) print("\tAvg: %.3f s/step" % avg_of_records) print("\tFPS: %.3f %s" % (fps, fps_unit)) if skip_steps > 0: print("average latency of %d steps, skip %d steps:" % (count, skip_steps)) print("\tAvg: %.3f s/step" % avg_of_records_skipped) print("\tMin: %.3f s/step" % skip_min) print("\tMax: %.3f s/step" % skip_max) print("\tFPS: %.3f %s" % (fps_skipped, fps_unit)) return round(fps_skipped, 3), fps_unit if __name__ == "__main__": args = parse_args() run_info = dict() run_info["log_file"] = args.filename run_info["model_name"] = args.model_name run_info["mission_name"] = args.mission_name run_info["direction_id"] = args.direction_id run_info["run_mode"] = args.run_mode run_info["index"] = args.index run_info["gpu_num"] = args.gpu_num run_info["FINAL_RESULT"] = 0 run_info["JOB_FAIL_FLAG"] = 0 try: if args.index == 1: if args.gpu_num == 1: run_info["log_with_profiler"] = args.log_with_profiler run_info["profiler_path"] = args.profiler_path analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator, args.position, args.range) run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis( batch_size=args.base_batch_size, gpu_num=args.gpu_num, skip_steps=args.skip_steps, mode=args.model_mode, run_mode=args.run_mode, unit=args.ips_unit) try: if int(os.getenv('job_fail_flag')) == 1 or int(run_info["FINAL_RESULT"]) == 0: run_info["JOB_FAIL_FLAG"] = 1 except: pass elif args.index == 3: run_info["FINAL_RESULT"] = {} records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead', None, 3, '').records records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead', None, 5).records records_ct_total = TimeAnalyzer(args.filename, 'Computation time', None, 3, '').records records_gm_total = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 4, '').records records_gm_ratio = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 6).records records_gmas_total = TimeAnalyzer(args.filename, 'GpuMemcpyAsync Calls', None, 4, '').records records_gms_total = TimeAnalyzer(args.filename, 'GpuMemcpySync Calls', None, 4, '').records run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[0] if records_fo_total else 0 run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[0] if records_fo_ratio else 0 run_info["FINAL_RESULT"]["ComputationTime_Total"] = records_ct_total[0] if records_ct_total else 0 run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[0] if records_gm_total else 0 run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[0] if records_gm_ratio else 0 run_info["FINAL_RESULT"]["GpuMemcpyAsync_Total"] = records_gmas_total[0] if records_gmas_total else 0 run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[0] if records_gms_total else 0 else: print("Not support!") except Exception: traceback.print_exc() print("{}".format(json.dumps(run_info))) # it's required, for the log file path insert to the database