# 简介 PaddleOCR旨在打造一套丰富、领先、且实用的文字检测、识别模型/工具库,助力使用者训练出更好的模型,并应用落地。 【这里加上效果图】 ## 文档教程 - [快速安装](./doc/installation.md) - [文本识别模型训练/评估/预测](./doc/detection.md) - [文本预测模型训练/评估/预测](./doc/recognition.md) ## 特性: - 超轻量级模型 -(检测模型4.1M + 识别模型4.5M = 8.6M) - 支持竖排文字 - (单模型同时支持横排和竖排文字识别) - 支持长文本识别 - 支持中英文数字组合识别 - 提供训练代码 - 支持模型部署 ## 文本检测算法: PaddleOCR提供的文本检测算法列表: - [EAST](https://arxiv.org/abs/1704.03155) - [DB](https://arxiv.org/abs/1911.08947) - [SAST](https://arxiv.org/abs/1908.05498) 算法效果: |模型|骨干网络|数据集|Hmean| |-|-|-|-| |EAST|ResNet50_vd|ICDAR2015|85.85%| |EAST|MobileNetV3|ICDAR2015|79.08%| |DB|ResNet50_vd|ICDAR2015|83.30%| |DB|MobileNetV3|ICDAR2015|73.00%| PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md)。 ## 文本识别算法: PaddleOCR提供的文本识别算法列表: - (CRNN)[https://arxiv.org/abs/1507.05717] - [Rosetta](https://arxiv.org/abs/1910.05085) - [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html) - [RARE](https://arxiv.org/abs/1603.03915v1) - [SRN]((https://arxiv.org/abs/2003.12294))(百度自研) 算法效果: 以下指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均。 |模型|骨干网络|ACC| |-|-|-| |Rosetta|Resnet34_vd|80.24%| |Rosetta|MobileNetV3|78.16%| |CRNN|Resnet34_vd|82.20%| |CRNN|MobileNetV3|79.37%| |STAR-Net|Resnet34_vd|83.93%| |STAR-Net|MobileNetV3|81.56%| |RARE|Resnet34_vd|84.90%| |RARE|MobileNetV3|83.32%| PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md)。 ## 端到端算法 PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。 - End2End-PSL (comming soon) # 参考文献 ``` EAST: @inproceedings{zhou2017east, title={EAST: an efficient and accurate scene text detector}, author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun}, booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition}, pages={5551--5560}, year={2017} } DB: @article{liao2019real, title={Real-time Scene Text Detection with Differentiable Binarization}, author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang}, journal={arXiv preprint arXiv:1911.08947}, year={2019} } DTRB: @inproceedings{baek2019wrong, title={What is wrong with scene text recognition model comparisons? dataset and model analysis}, author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={4715--4723}, year={2019} } SAST: @inproceedings{wang2019single, title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning}, author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia}, pages={1277--1285}, year={2019} } SRN: @article{yu2020towards, title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks}, author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui}, journal={arXiv preprint arXiv:2003.12294}, year={2020} } end2end-psl: @inproceedings{sun2019chinese, title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning}, author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={9086--9095}, year={2019} } ```