Global: use_gpu: True epoch_num: 400 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec/seed save_epoch_step: 3 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words_en/word_10.png # for data or label process character_dict_path: character_type: EN_symbol max_text_length: 100 infer_mode: False use_space_char: False save_res_path: ./output/rec/predicts_seed.txt Optimizer: name: Adadelta weight_deacy: 0.0 momentum: 0.9 lr: name: Piecewise decay_epochs: [4,5,8] values: [1.0, 0.1, 0.01] regularizer: name: 'L2' factor: 2.0e-05 Architecture: model_type: rec algorithm: seed Transform: name: STN_ON tps_inputsize: [32, 64] tps_outputsize: [32, 100] num_control_points: 20 tps_margins: [0.05,0.05] stn_activation: none Backbone: name: ResNet_ASTER Head: name: AsterHead # AttentionHead sDim: 512 attDim: 512 max_len_labels: 100 Loss: name: AsterLoss PostProcess: name: SEEDLabelDecode Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/training/ transforms: - Fasttext: path: "./cc.en.300.bin" - DecodeImage: # load image img_mode: BGR channel_first: False - SEEDLabelEncode: # Class handling label - RecResizeImg: character_type: en image_shape: [3, 64, 256] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length', 'fast_label'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 256 drop_last: True num_workers: 6 Eval: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/evaluation/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - SEEDLabelEncode: # Class handling label - RecResizeImg: character_type: en image_shape: [3, 64, 256] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: True batch_size_per_card: 256 num_workers: 4