// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleOCR { void CRNNRecognizer::Run(cv::Mat &img, std::vector *times) { cv::Mat srcimg; img.copyTo(srcimg); cv::Mat resize_img; float wh_ratio = float(srcimg.cols) / float(srcimg.rows); auto preprocess_start = std::chrono::steady_clock::now(); this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); auto preprocess_end = std::chrono::steady_clock::now(); // Inference. auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputHandle(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); auto inference_start = std::chrono::steady_clock::now(); input_t->CopyFromCpu(input.data()); this->predictor_->Run(); std::vector predict_batch; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputHandle(output_names[0]); auto predict_shape = output_t->shape(); int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1, std::multiplies()); predict_batch.resize(out_num); output_t->CopyToCpu(predict_batch.data()); auto inference_end = std::chrono::steady_clock::now(); // ctc decode auto postprocess_start = std::chrono::steady_clock::now(); std::vector str_res; int argmax_idx; int last_index = 0; float score = 0.f; int count = 0; float max_value = 0.0f; for (int n = 0; n < predict_shape[1]; n++) { argmax_idx = int(Utility::argmax(&predict_batch[n * predict_shape[2]], &predict_batch[(n + 1) * predict_shape[2]])); max_value = float(*std::max_element(&predict_batch[n * predict_shape[2]], &predict_batch[(n + 1) * predict_shape[2]])); if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) { score += max_value; count += 1; str_res.push_back(label_list_[argmax_idx]); } last_index = argmax_idx; } auto postprocess_end = std::chrono::steady_clock::now(); score /= count; for (int i = 0; i < str_res.size(); i++) { std::cout << str_res[i]; } std::cout << "\tscore: " << score << std::endl; std::chrono::duration preprocess_diff = preprocess_end - preprocess_start; times->push_back(double(preprocess_diff.count() * 1000)); std::chrono::duration inference_diff = inference_end - inference_start; times->push_back(double(inference_diff.count() * 1000)); std::chrono::duration postprocess_diff = postprocess_end - postprocess_start; times->push_back(double(postprocess_diff.count() * 1000)); } void CRNNRecognizer::LoadModel(const std::string &model_dir) { // AnalysisConfig config; paddle_infer::Config config; config.SetModel(model_dir + "/inference.pdmodel", model_dir + "/inference.pdiparams"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); if (this->use_tensorrt_) { auto precision = paddle_infer::Config::Precision::kFloat32; if (this->precision_ == "fp16") { precision = paddle_infer::Config::Precision::kHalf; } if (this->precision_ == "int8") { precision = paddle_infer::Config::Precision::kInt8; } config.EnableTensorRtEngine( 1 << 20, 10, 3, precision, false, false); std::map> min_input_shape = { {"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}}; std::map> max_input_shape = { {"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}}; std::map> opt_input_shape = { {"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}}; config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape, opt_input_shape); } } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); // cache 10 different shapes for mkldnn to avoid memory leak config.SetMkldnnCacheCapacity(10); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } config.SwitchUseFeedFetchOps(false); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); // config.DisableGlogInfo(); this->predictor_ = CreatePredictor(config); } } // namespace PaddleOCR