Global: use_gpu: true epoch_num: 10000 log_smooth_window: 20 print_batch_step: 2 save_model_dir: ./output/east_r50_vd/ save_epoch_step: 1000 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [4000, 5000] cal_metric_during_train: False pretrained_model: ./pretrain_models/ResNet50_vd_pretrained checkpoints: save_inference_dir: use_visualdl: False infer_img: save_res_path: ./output/det_east/predicts_east.txt Architecture: model_type: det algorithm: EAST Transform: Backbone: name: ResNet layers: 50 Neck: name: EASTFPN model_name: large Head: name: EASTHead model_name: large Loss: name: EASTLoss Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: # name: Cosine learning_rate: 0.001 # warmup_epoch: 0 regularizer: name: 'L2' factor: 0 PostProcess: name: EASTPostProcess score_thresh: 0.8 cover_thresh: 0.1 nms_thresh: 0.2 Metric: name: DetMetric main_indicator: hmean Train: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list: - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt ratio_list: [1.0] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - EASTProcessTrain: image_shape: [512, 512] background_ratio: 0.125 min_crop_side_ratio: 0.1 min_text_size: 10 - KeepKeys: keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order loader: shuffle: True drop_last: False batch_size_per_card: 8 num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list: - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - DetResizeForTest: limit_side_len: 2400 limit_type: max - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'shape', 'polys', 'ignore_tags'] loader: shuffle: False drop_last: False batch_size_per_card: 1 # must be 1 num_workers: 2