# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np class ClsLabelEncode(object): def __init__(self, label_list, **kwargs): self.label_list = label_list def __call__(self, data): label = data['label'] if label not in self.label_list: return None label = self.label_list.index(label) data['label'] = label return data class DetLabelEncode(object): def __init__(self, **kwargs): pass def __call__(self, data): import json label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['texts'] = txts data['ignore_tags'] = txt_tags return data def order_points_clockwise(self, pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect class BaseRecLabelEncode(object): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, character_type='ch', use_space_char=False): support_character_type = ['ch', 'en', 'en_sensitive'] assert character_type in support_character_type, "Only {} are supported now but get {}".format( support_character_type, self.character_str) self.max_text_len = max_text_length if character_type == "en": self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) elif character_type == "ch": self.character_str = "" assert character_dict_path is not None, "character_dict_path should not be None when character_type is ch" with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str += line if use_space_char: self.character_str += " " dict_character = list(self.character_str) elif character_type == "en_sensitive": # same with ASTER setting (use 94 char). import string self.character_str = string.printable[:-6] dict_character = list(self.character_str) self.character_type = character_type dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): return dict_character def encode(self, text): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ if len(text) > self.max_text_len: return None if self.character_type == "en": text = text.lower() text_list = [] for char in text: if char not in self.dict: # logger = get_logger() # logger.warning('{} is not in dict'.format(char)) continue text_list.append(self.dict[char]) if len(text_list) == 0: return None return text_list def get_ignored_tokens(self): return [0] # for ctc blank class CTCLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, character_type='ch', use_space_char=False, **kwargs): super(CTCLabelEncode, self).__init__(max_text_length, character_dict_path, character_type, use_space_char) def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) > self.max_text_len: return None data['length'] = np.array(len(text)) text = text + [0] * (self.max_text_len - len(text)) data['label'] = np.array(text) return data def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character class AttnLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, character_type='ch', use_space_char=False, **kwargs): super(AttnLabelEncode, self).__init__(max_text_length, character_dict_path, character_type, use_space_char) self.beg_str = "sos" self.end_str = "eos" def add_special_char(self, dict_character): dict_character = [self.beg_str, self.end_str] + dict_character return dict_character def __call__(self, text): text = self.encode(text) return text def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx