# PaddleOCR Quick Start [PaddleOCR Quick Start](#paddleocr-quick-start) * [1. Light Installation](#1-light-installation) + [1.1 Install PaddlePaddle2.0](#11-install-paddlepaddle20) + [1.2 Install PaddleOCR Whl Package](#12-install-paddleocr-whl-package) * [2. Easy-to-Use](#2-easy-to-use) + [2.1 Use by command line](#21-use-by-command-line) - [2.1.1 English and Chinese Model](#211-english-and-chinese-model) - [2.1.2 Multi-language Model](#212-multi-language-model) - [2.1.3 LayoutParser](#213-layoutparser) + [2.2 Use by Code](#22-use-by-code) - [2.2.1 Chinese & English Model and Multilingual Model](#221-chinese---english-model-and-multilingual-model) - [2.2.2 LayoutParser](#222-layoutparser) ## 1. Light Installation ### 1.1 Install PaddlePaddle2.0 ```bash # If you have cuda9 or cuda10 installed on your machine, please run the following command to install python3 -m pip install paddlepaddle-gpu==2.0.0 -i https://mirror.baidu.com/pypi/simple # If you only have cpu on your machine, please run the following command to install python3 -m pip install paddlepaddle==2.0.0 -i https://mirror.baidu.com/pypi/simple ``` For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation. ### 1.2 Install PaddleOCR Whl Package ```bash pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+ ``` - **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely). Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found) - **For layout analysis users**, run the following command to install **Layout-Parser** ```bash pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl ``` ## 2. Easy-to-Use ### 2.1 Use by command line PaddleOCR provides a series of test images, click xx to download, and then switch to the corresponding directory in the terminal ```bash cd /path/to/ppocr_img ``` If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path #### 2.1.1 Chinese and English Model * Detection, direction classification and recognition: set the direction classifier parameter`--use_angle_cls true` to recognize vertical text. ```bash paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en ``` Output will be a list, each item contains bounding box, text and recognition confidence ```bash [[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]] [[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]] [[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]] ...... ``` * Only detection: set `--rec` to `false` ```bash paddleocr --image_dir ./imgs_en/img_12.jpg --rec false ``` Output will be a list, each item only contains bounding box ```bash [[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]] [[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]] [[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]] ...... ``` * Only recognition: set `--det` to `false` ```bash paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en ``` Output will be a list, each item contains text and recognition confidence ```bash ['PAIN', 0.990372] ``` More whl package usage can be found in [whl package](./whl_en.md) #### 2.1.2 Multi-language Model Paddleocr currently supports 80 languages, which can be switched by modifying the `--lang` parameter. ``` bash paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en ```
The result is a list, each item contains a text box, text and recognition confidence ```text [('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]] [('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]] [('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]] [('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]] [('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]] [('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]] [('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]] ...... ``` Commonly used multilingual abbreviations include | Language | Abbreviation | | Language | Abbreviation | | Language | Abbreviation | | ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ | | Chinese & English | ch | | French | fr | | Japanese | japan | | English | en | | German | german | | Korean | korean | | Chinese Traditional | chinese_cht | | Italian | it | | Russian | ru | A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./multi_languages_en.md) #### 2.1.3 LayoutParser To use the layout analysis function of PaddleOCR, you need to specify `--type=structure` ```bash paddleocr --image_dir=../doc/table/1.png --type=structure ``` - **Results Format** The returned results of PP-Structure is a list composed of a dict, an example is as follows ```shell [ { 'type': 'Text', 'bbox': [34, 432, 345, 462], 'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]], [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)]) } ] ``` The description of each field in dict is as follows | Parameter | Description | | --------- | ------------------------------------------------------------ | | type | Type of image area | | bbox | The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y] | | res | OCR or table recognition result of image area。
Table: HTML string of the table;
OCR: A tuple containing the detection coordinates and recognition results of each single line of text | - **Parameter Description:** | Parameter | Description | Default value | | --------------- | ------------------------------------------------------------ | -------------------------------------------- | | output | The path where excel and recognition results are saved | ./output/table | | table_max_len | The long side of the image is resized in table structure model | 488 | | table_model_dir | inference model path of table structure model | None | | table_char_type | dict path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt | ### 2.2 Use by Code #### 2.2.1 Chinese & English Model and Multilingual Model * detection, angle classification and recognition: ```python from paddleocr import PaddleOCR,draw_ocr # Paddleocr supports Chinese, English, French, German, Korean and Japanese. # You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan` # to switch the language model in order. ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory img_path = './imgs_en/img_12.jpg' result = ocr.ocr(img_path, cls=True) for line in result: print(line) # draw result from PIL import Image image = Image.open(img_path).convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf') im_show = Image.fromarray(im_show) im_show.save('result.jpg') ``` Output will be a list, each item contains bounding box, text and recognition confidence ```bash [[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]] [[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]] [[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]] ...... ``` Visualization of results
#### 2.2.2 LayoutParser ```python import os import cv2 from paddleocr import PPStructure,draw_structure_result,save_structure_res table_engine = PPStructure(show_log=True) save_folder = './output/table' img_path = './table/1.png' img = cv2.imread(img_path) result = table_engine(img) save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0]) for line in result: line.pop('img') print(line) from PIL import Image font_path = './fonts/simfang.ttf' image = Image.open(img_path).convert('RGB') im_show = draw_structure_result(image, result,font_path=font_path) im_show = Image.fromarray(im_show) im_show.save('result.jpg') ```