# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) import json import cv2 import numpy as np from copy import deepcopy from PIL import Image import paddle from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification # relative reference from vqa_utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps from vqa_utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info MODELS = { 'LayoutXLM': (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification), 'LayoutLM': (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification) } def trans_poly_to_bbox(poly): x1 = np.min([p[0] for p in poly]) x2 = np.max([p[0] for p in poly]) y1 = np.min([p[1] for p in poly]) y2 = np.max([p[1] for p in poly]) return [x1, y1, x2, y2] def parse_ocr_info_for_ser(ocr_result): ocr_info = [] for res in ocr_result: ocr_info.append({ "text": res[1][0], "bbox": trans_poly_to_bbox(res[0]), "poly": res[0], }) return ocr_info class SerPredictor(object): def __init__(self, args): self.args = args self.max_seq_length = args.max_seq_length # init ser token and model tokenizer_class, base_model_class, model_class = MODELS[ args.ser_model_type] self.tokenizer = tokenizer_class.from_pretrained( args.model_name_or_path) self.model = model_class.from_pretrained(args.model_name_or_path) self.model.eval() # init ocr_engine from paddleocr import PaddleOCR self.ocr_engine = PaddleOCR( rec_model_dir=args.rec_model_dir, det_model_dir=args.det_model_dir, use_angle_cls=False, show_log=False) # init dict label2id_map, self.id2label_map = get_bio_label_maps( args.label_map_path) self.label2id_map_for_draw = dict() for key in label2id_map: if key.startswith("I-"): self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]] else: self.label2id_map_for_draw[key] = label2id_map[key] def __call__(self, img): ocr_result = self.ocr_engine.ocr(img, cls=False) ocr_info = parse_ocr_info_for_ser(ocr_result) inputs = preprocess( tokenizer=self.tokenizer, ori_img=img, ocr_info=ocr_info, max_seq_len=self.max_seq_length) if self.args.ser_model_type == 'LayoutLM': preds = self.model( input_ids=inputs["input_ids"], bbox=inputs["bbox"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"]) elif self.args.ser_model_type == 'LayoutXLM': preds = self.model( input_ids=inputs["input_ids"], bbox=inputs["bbox"], image=inputs["image"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"]) preds = preds[0] preds = postprocess(inputs["attention_mask"], preds, self.id2label_map) ocr_info = merge_preds_list_with_ocr_info( ocr_info, inputs["segment_offset_id"], preds, self.label2id_map_for_draw) return ocr_info, inputs if __name__ == "__main__": args = parse_args() os.makedirs(args.output_dir, exist_ok=True) # get infer img list infer_imgs = get_image_file_list(args.infer_imgs) # loop for infer ser_engine = SerPredictor(args) with open( os.path.join(args.output_dir, "infer_results.txt"), "w", encoding='utf-8') as fout: for idx, img_path in enumerate(infer_imgs): save_img_path = os.path.join( args.output_dir, os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg") print("process: [{}/{}], save result to {}".format( idx, len(infer_imgs), save_img_path)) img = cv2.imread(img_path) result, _ = ser_engine(img) fout.write(img_path + "\t" + json.dumps( { "ser_resule": result, }, ensure_ascii=False) + "\n") img_res = draw_ser_results(img, result) cv2.imwrite(save_img_path, img_res)