import cv2 import paddle import numpy as np import pyclipper from shapely.geometry import Polygon class DBPostProcess(): def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=1.5): self.min_size = 3 self.thresh = thresh self.box_thresh = box_thresh self.max_candidates = max_candidates self.unclip_ratio = unclip_ratio def __call__(self, pred, shape_list, is_output_polygon=False): ''' batch: (image, polygons, ignore_tags h_w_list: 包含[h,w]的数组 pred: binary: text region segmentation map, with shape (N, 1,H, W) ''' if isinstance(pred, paddle.Tensor): pred = pred.numpy() pred = pred[:, 0, :, :] segmentation = self.binarize(pred) batch_out = [] for batch_index in range(pred.shape[0]): height, width = shape_list[batch_index] boxes, scores = self.post_p( pred[batch_index], segmentation[batch_index], width, height, is_output_polygon=is_output_polygon) batch_out.append({"points": boxes}) return batch_out def binarize(self, pred): return pred > self.thresh def post_p(self, pred, bitmap, dest_width, dest_height, is_output_polygon=True): ''' _bitmap: single map with shape (H, W), whose values are binarized as {0, 1} ''' height, width = pred.shape boxes = [] new_scores = [] contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for contour in contours[:self.max_candidates]: epsilon = 0.005 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) points = approx.reshape((-1, 2)) if points.shape[0] < 4: continue score = self.box_score_fast(pred, points.reshape(-1, 2)) if self.box_thresh > score: continue if points.shape[0] > 2: box = self.unclip(points, unclip_ratio=self.unclip_ratio) if len(box) > 1 or len(box) == 0: continue else: continue four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) if sside < self.min_size + 2: continue if not is_output_polygon: box = np.array(four_point_box) else: box = box.reshape(-1, 2) box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box) new_scores.append(score) return boxes, new_scores def unclip(self, box, unclip_ratio=1.5): poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) return expanded def get_mini_boxes(self, contour): bounding_box = cv2.minAreaRect(contour) points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) index_1, index_2, index_3, index_4 = 0, 1, 2, 3 if points[1][1] > points[0][1]: index_1 = 0 index_4 = 1 else: index_1 = 1 index_4 = 0 if points[3][1] > points[2][1]: index_2 = 2 index_3 = 3 else: index_2 = 3 index_3 = 2 box = [ points[index_1], points[index_2], points[index_3], points[index_4] ] return box, min(bounding_box[1]) def box_score_fast(self, bitmap, _box): h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]