# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn class CosineEmbeddingLoss(nn.Layer): def __init__(self, margin=0.): super(CosineEmbeddingLoss, self).__init__() self.margin = margin self.epsilon = 1e-12 def forward(self, x1, x2, target): similarity = paddle.sum(x1 * x2, axis=-1) / (paddle.norm( x1, axis=-1) * paddle.norm( x2, axis=-1) + self.epsilon) one_list = paddle.full_like(target, fill_value=1) out = paddle.mean( paddle.where( paddle.equal(target, one_list), 1. - similarity, paddle.maximum( paddle.zeros_like(similarity), similarity - self.margin))) return out class AsterLoss(nn.Layer): def __init__(self, weight=None, size_average=True, ignore_index=-100, sequence_normalize=False, sample_normalize=True, **kwargs): super(AsterLoss, self).__init__() self.weight = weight self.size_average = size_average self.ignore_index = ignore_index self.sequence_normalize = sequence_normalize self.sample_normalize = sample_normalize self.loss_sem = CosineEmbeddingLoss() self.is_cosin_loss = True self.loss_func_rec = nn.CrossEntropyLoss(weight=None, reduction='none') def forward(self, predicts, batch): targets = batch[1].astype("int64") label_lengths = batch[2].astype('int64') sem_target = batch[3].astype('float32') embedding_vectors = predicts['embedding_vectors'] rec_pred = predicts['rec_pred'] if not self.is_cosin_loss: sem_loss = paddle.sum(self.loss_sem(embedding_vectors, sem_target)) else: label_target = paddle.ones([embedding_vectors.shape[0]]) sem_loss = paddle.sum( self.loss_sem(embedding_vectors, sem_target, label_target)) # rec loss batch_size, def_max_length = targets.shape[0], targets.shape[1] mask = paddle.zeros([batch_size, def_max_length]) for i in range(batch_size): mask[i, :label_lengths[i]] = 1 mask = paddle.cast(mask, "float32") max_length = max(label_lengths) assert max_length == rec_pred.shape[1] targets = targets[:, :max_length] mask = mask[:, :max_length] rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[2]]) input = nn.functional.log_softmax(rec_pred, axis=1) targets = paddle.reshape(targets, [-1, 1]) mask = paddle.reshape(mask, [-1, 1]) output = -paddle.index_sample(input, index=targets) * mask output = paddle.sum(output) if self.sequence_normalize: output = output / paddle.sum(mask) if self.sample_normalize: output = output / batch_size loss = output + sem_loss * 0.1 return {'loss': loss}