Global: use_gpu: True epoch_num: 600 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/pgnet_r50_vd_totaltext/ save_epoch_step: 10 # evaluation is run every 0 iterationss after the 1000th iteration eval_batch_step: [ 0, 1000 ] # 1. If pretrained_model is saved in static mode, such as classification pretrained model # from static branch, load_static_weights must be set as True. # 2. If you want to finetune the pretrained models we provide in the docs, # you should set load_static_weights as False. load_static_weights: False cal_metric_during_train: False pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: valid_set: totaltext # two mode: totaltext valid curved words, partvgg valid non-curved words save_res_path: ./output/pgnet_r50_vd_totaltext/predicts_pgnet.txt character_dict_path: ppocr/utils/ic15_dict.txt character_type: EN max_text_length: 50 # the max length in seq max_text_nums: 30 # the max seq nums in a pic tcl_len: 64 Architecture: model_type: e2e algorithm: PGNet Transform: Backbone: name: ResNet layers: 50 Neck: name: PGFPN Head: name: PGHead Loss: name: PGLoss tcl_bs: 64 max_text_length: 50 # the same as Global: max_text_length max_text_nums: 30 # the same as Global:max_text_nums pad_num: 36 # the length of dict for pad Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.001 regularizer: name: 'L2' factor: 0 PostProcess: name: PGPostProcess score_thresh: 0.5 Metric: name: E2EMetric character_dict_path: ppocr/utils/ic15_dict.txt main_indicator: f_score_e2e Train: dataset: name: PGDataSet label_file_list: [.././train_data/total_text/train/] ratio_list: [1.0] data_format: icdar #two data format: icdar/textnet transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - PGProcessTrain: batch_size: 14 # same as loader: batch_size_per_card min_crop_size: 24 min_text_size: 4 max_text_size: 512 - KeepKeys: keep_keys: [ 'images', 'tcl_maps', 'tcl_label_maps', 'border_maps','direction_maps', 'training_masks', 'label_list', 'pos_list', 'pos_mask' ] # dataloader will return list in this order loader: shuffle: True drop_last: True batch_size_per_card: 14 num_workers: 16 Eval: dataset: name: PGDataSet data_dir: ./train_data/ label_file_list: [./train_data/total_text/test/] transforms: - DecodeImage: # load image img_mode: RGB channel_first: False - E2ELabelEncode: - E2EResizeForTest: max_side_len: 768 - NormalizeImage: scale: 1./255. mean: [ 0.485, 0.456, 0.406 ] std: [ 0.229, 0.224, 0.225 ] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'shape', 'polys', 'strs', 'tags' ] loader: shuffle: False drop_last: False batch_size_per_card: 1 # must be 1 num_workers: 2