/* pybind11/pybind11.h: Main header file of the C++11 python binding generator library Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant # pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted # pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning) # pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name # pragma warning(disable: 4702) // warning C4702: unreachable code # pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified #elif defined(__INTEL_COMPILER) # pragma warning(push) # pragma warning(disable: 68) // integer conversion resulted in a change of sign # pragma warning(disable: 186) // pointless comparison of unsigned integer with zero # pragma warning(disable: 878) // incompatible exception specifications # pragma warning(disable: 1334) // the "template" keyword used for syntactic disambiguation may only be used within a template # pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) # pragma warning(disable: 1875) // offsetof applied to non-POD (Plain Old Data) types is nonstandard # pragma warning(disable: 2196) // warning #2196: routine is both "inline" and "noinline" #elif defined(__GNUG__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-but-set-parameter" # pragma GCC diagnostic ignored "-Wunused-but-set-variable" # pragma GCC diagnostic ignored "-Wmissing-field-initializers" # pragma GCC diagnostic ignored "-Wstrict-aliasing" # pragma GCC diagnostic ignored "-Wattributes" # if __GNUC__ >= 7 # pragma GCC diagnostic ignored "-Wnoexcept-type" # endif #endif #include "attr.h" #include "options.h" #include "class_support.h" NAMESPACE_BEGIN(pybind11) /// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object class cpp_function : public function { public: cpp_function() { } /// Construct a cpp_function from a vanilla function pointer template cpp_function(Return (*f)(Args...), const Extra&... extra) { initialize(f, f, extra...); } /// Construct a cpp_function from a lambda function (possibly with internal state) template , std::is_function, std::is_pointer, std::is_member_pointer >::value> > cpp_function(Func &&f, const Extra&... extra) { using FuncType = typename detail::remove_class::operator())>::type; initialize(std::forward(f), (FuncType *) nullptr, extra...); } /// Construct a cpp_function from a class method (non-const) template cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) { initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*) (Class *, Arg...)) nullptr, extra...); } /// Construct a cpp_function from a class method (const) template cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*)(const Class *, Arg ...)) nullptr, extra...); } /// Return the function name object name() const { return attr("__name__"); } protected: /// Space optimization: don't inline this frequently instantiated fragment PYBIND11_NOINLINE detail::function_record *make_function_record() { return new detail::function_record(); } /// Special internal constructor for functors, lambda functions, etc. template void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) { struct capture { detail::remove_reference_t f; }; /* Store the function including any extra state it might have (e.g. a lambda capture object) */ auto rec = make_function_record(); /* Store the capture object directly in the function record if there is enough space */ if (sizeof(capture) <= sizeof(rec->data)) { /* Without these pragmas, GCC warns that there might not be enough space to use the placement new operator. However, the 'if' statement above ensures that this is the case. */ #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wplacement-new" #endif new ((capture *) &rec->data) capture { std::forward(f) }; #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6 # pragma GCC diagnostic pop #endif if (!std::is_trivially_destructible::value) rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); }; } else { rec->data[0] = new capture { std::forward(f) }; rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); }; } /* Type casters for the function arguments and return value */ using cast_in = detail::argument_loader; using cast_out = detail::make_caster< detail::conditional_t::value, detail::void_type, Return> >; static_assert(detail::expected_num_args(sizeof...(Args), cast_in::has_args, cast_in::has_kwargs), "The number of argument annotations does not match the number of function arguments"); /* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](detail::function_call &call) -> handle { cast_in args_converter; /* Try to cast the function arguments into the C++ domain */ if (!args_converter.load_args(call)) return PYBIND11_TRY_NEXT_OVERLOAD; /* Invoke call policy pre-call hook */ detail::process_attributes::precall(call); /* Get a pointer to the capture object */ auto data = (sizeof(capture) <= sizeof(call.func.data) ? &call.func.data : call.func.data[0]); capture *cap = const_cast(reinterpret_cast(data)); /* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */ const auto policy = detail::return_value_policy_override::policy(call.func.policy); /* Function scope guard -- defaults to the compile-to-nothing `void_type` */ using Guard = detail::extract_guard_t; /* Perform the function call */ handle result = cast_out::cast( std::move(args_converter).template call(cap->f), policy, call.parent); /* Invoke call policy post-call hook */ detail::process_attributes::postcall(call, result); return result; }; /* Process any user-provided function attributes */ detail::process_attributes::init(extra..., rec); /* Generate a readable signature describing the function's arguments and return value types */ using detail::descr; using detail::_; PYBIND11_DESCR signature = _("(") + cast_in::arg_names() + _(") -> ") + cast_out::name(); /* Register the function with Python from generic (non-templated) code */ initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args)); if (cast_in::has_args) rec->has_args = true; if (cast_in::has_kwargs) rec->has_kwargs = true; /* Stash some additional information used by an important optimization in 'functional.h' */ using FunctionType = Return (*)(Args...); constexpr bool is_function_ptr = std::is_convertible::value && sizeof(capture) == sizeof(void *); if (is_function_ptr) { rec->is_stateless = true; rec->data[1] = const_cast(reinterpret_cast(&typeid(FunctionType))); } } /// Register a function call with Python (generic non-templated code goes here) void initialize_generic(detail::function_record *rec, const char *text, const std::type_info *const *types, size_t args) { /* Create copies of all referenced C-style strings */ rec->name = strdup(rec->name ? rec->name : ""); if (rec->doc) rec->doc = strdup(rec->doc); for (auto &a: rec->args) { if (a.name) a.name = strdup(a.name); if (a.descr) a.descr = strdup(a.descr); else if (a.value) a.descr = strdup(a.value.attr("__repr__")().cast().c_str()); } /* Generate a proper function signature */ std::string signature; size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0; while (true) { char c = text[char_index++]; if (c == '\0') break; if (c == '{') { // Write arg name for everything except *args, **kwargs and return type. if (type_depth == 0 && text[char_index] != '*' && arg_index < args) { if (!rec->args.empty() && rec->args[arg_index].name) { signature += rec->args[arg_index].name; } else if (arg_index == 0 && rec->is_method) { signature += "self"; } else { signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0)); } signature += ": "; } ++type_depth; } else if (c == '}') { --type_depth; if (type_depth == 0) { if (arg_index < rec->args.size() && rec->args[arg_index].descr) { signature += "="; signature += rec->args[arg_index].descr; } arg_index++; } } else if (c == '%') { const std::type_info *t = types[type_index++]; if (!t) pybind11_fail("Internal error while parsing type signature (1)"); if (auto tinfo = detail::get_type_info(*t)) { #if defined(PYPY_VERSION) signature += handle((PyObject *) tinfo->type) .attr("__module__") .cast() + "."; #endif signature += tinfo->type->tp_name; } else { std::string tname(t->name()); detail::clean_type_id(tname); signature += tname; } } else { signature += c; } } if (type_depth != 0 || types[type_index] != nullptr) pybind11_fail("Internal error while parsing type signature (2)"); #if !defined(PYBIND11_CONSTEXPR_DESCR) delete[] types; delete[] text; #endif #if PY_MAJOR_VERSION < 3 if (strcmp(rec->name, "__next__") == 0) { std::free(rec->name); rec->name = strdup("next"); } else if (strcmp(rec->name, "__bool__") == 0) { std::free(rec->name); rec->name = strdup("__nonzero__"); } #endif rec->signature = strdup(signature.c_str()); rec->args.shrink_to_fit(); rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__"); rec->nargs = (std::uint16_t) args; if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr())) rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr()); detail::function_record *chain = nullptr, *chain_start = rec; if (rec->sibling) { if (PyCFunction_Check(rec->sibling.ptr())) { auto rec_capsule = reinterpret_borrow(PyCFunction_GET_SELF(rec->sibling.ptr())); chain = (detail::function_record *) rec_capsule; /* Never append a method to an overload chain of a parent class; instead, hide the parent's overloads in this case */ if (!chain->scope.is(rec->scope)) chain = nullptr; } // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing else if (!rec->sibling.is_none() && rec->name[0] != '_') pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) + "\" with a function of the same name"); } if (!chain) { /* No existing overload was found, create a new function object */ rec->def = new PyMethodDef(); std::memset(rec->def, 0, sizeof(PyMethodDef)); rec->def->ml_name = rec->name; rec->def->ml_meth = reinterpret_cast(*dispatcher); rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS; capsule rec_capsule(rec, [](void *ptr) { destruct((detail::function_record *) ptr); }); object scope_module; if (rec->scope) { if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } } m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); } else { /* Append at the end of the overload chain */ m_ptr = rec->sibling.ptr(); inc_ref(); chain_start = chain; if (chain->is_method != rec->is_method) pybind11_fail("overloading a method with both static and instance methods is not supported; " #if defined(NDEBUG) "compile in debug mode for more details" #else "error while attempting to bind " + std::string(rec->is_method ? "instance" : "static") + " method " + std::string(pybind11::str(rec->scope.attr("__name__"))) + "." + std::string(rec->name) + signature #endif ); while (chain->next) chain = chain->next; chain->next = rec; } std::string signatures; int index = 0; /* Create a nice pydoc rec including all signatures and docstrings of the functions in the overload chain */ if (chain && options::show_function_signatures()) { // First a generic signature signatures += rec->name; signatures += "(*args, **kwargs)\n"; signatures += "Overloaded function.\n\n"; } // Then specific overload signatures bool first_user_def = true; for (auto it = chain_start; it != nullptr; it = it->next) { if (options::show_function_signatures()) { if (index > 0) signatures += "\n"; if (chain) signatures += std::to_string(++index) + ". "; signatures += rec->name; signatures += it->signature; signatures += "\n"; } if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) { // If we're appending another docstring, and aren't printing function signatures, we // need to append a newline first: if (!options::show_function_signatures()) { if (first_user_def) first_user_def = false; else signatures += "\n"; } if (options::show_function_signatures()) signatures += "\n"; signatures += it->doc; if (options::show_function_signatures()) signatures += "\n"; } } /* Install docstring */ PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; if (func->m_ml->ml_doc) std::free(const_cast(func->m_ml->ml_doc)); func->m_ml->ml_doc = strdup(signatures.c_str()); if (rec->is_method) { m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object"); Py_DECREF(func); } } /// When a cpp_function is GCed, release any memory allocated by pybind11 static void destruct(detail::function_record *rec) { while (rec) { detail::function_record *next = rec->next; if (rec->free_data) rec->free_data(rec); std::free((char *) rec->name); std::free((char *) rec->doc); std::free((char *) rec->signature); for (auto &arg: rec->args) { std::free(const_cast(arg.name)); std::free(const_cast(arg.descr)); arg.value.dec_ref(); } if (rec->def) { std::free(const_cast(rec->def->ml_doc)); delete rec->def; } delete rec; rec = next; } } /// Main dispatch logic for calls to functions bound using pybind11 static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) { using namespace detail; /* Iterator over the list of potentially admissible overloads */ function_record *overloads = (function_record *) PyCapsule_GetPointer(self, nullptr), *it = overloads; /* Need to know how many arguments + keyword arguments there are to pick the right overload */ const size_t n_args_in = (size_t) PyTuple_GET_SIZE(args_in); handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr, result = PYBIND11_TRY_NEXT_OVERLOAD; try { // We do this in two passes: in the first pass, we load arguments with `convert=false`; // in the second, we allow conversion (except for arguments with an explicit // py::arg().noconvert()). This lets us prefer calls without conversion, with // conversion as a fallback. std::vector second_pass; // However, if there are no overloads, we can just skip the no-convert pass entirely const bool overloaded = it != nullptr && it->next != nullptr; for (; it != nullptr; it = it->next) { /* For each overload: 1. Copy all positional arguments we were given, also checking to make sure that named positional arguments weren't *also* specified via kwarg. 2. If we weren't given enough, try to make up the omitted ones by checking whether they were provided by a kwarg matching the `py::arg("name")` name. If so, use it (and remove it from kwargs; if not, see if the function binding provided a default that we can use. 3. Ensure that either all keyword arguments were "consumed", or that the function takes a kwargs argument to accept unconsumed kwargs. 4. Any positional arguments still left get put into a tuple (for args), and any leftover kwargs get put into a dict. 5. Pack everything into a vector; if we have py::args or py::kwargs, they are an extra tuple or dict at the end of the positional arguments. 6. Call the function call dispatcher (function_record::impl) If one of these fail, move on to the next overload and keep trying until we get a result other than PYBIND11_TRY_NEXT_OVERLOAD. */ function_record &func = *it; size_t pos_args = func.nargs; // Number of positional arguments that we need if (func.has_args) --pos_args; // (but don't count py::args if (func.has_kwargs) --pos_args; // or py::kwargs) if (!func.has_args && n_args_in > pos_args) continue; // Too many arguments for this overload if (n_args_in < pos_args && func.args.size() < pos_args) continue; // Not enough arguments given, and not enough defaults to fill in the blanks function_call call(func, parent); size_t args_to_copy = std::min(pos_args, n_args_in); size_t args_copied = 0; // 1. Copy any position arguments given. bool bad_arg = false; for (; args_copied < args_to_copy; ++args_copied) { argument_record *arg_rec = args_copied < func.args.size() ? &func.args[args_copied] : nullptr; if (kwargs_in && arg_rec && arg_rec->name && PyDict_GetItemString(kwargs_in, arg_rec->name)) { bad_arg = true; break; } handle arg(PyTuple_GET_ITEM(args_in, args_copied)); if (arg_rec && !arg_rec->none && arg.is_none()) { bad_arg = true; break; } call.args.push_back(arg); call.args_convert.push_back(arg_rec ? arg_rec->convert : true); } if (bad_arg) continue; // Maybe it was meant for another overload (issue #688) // We'll need to copy this if we steal some kwargs for defaults dict kwargs = reinterpret_borrow(kwargs_in); // 2. Check kwargs and, failing that, defaults that may help complete the list if (args_copied < pos_args) { bool copied_kwargs = false; for (; args_copied < pos_args; ++args_copied) { const auto &arg = func.args[args_copied]; handle value; if (kwargs_in && arg.name) value = PyDict_GetItemString(kwargs.ptr(), arg.name); if (value) { // Consume a kwargs value if (!copied_kwargs) { kwargs = reinterpret_steal(PyDict_Copy(kwargs.ptr())); copied_kwargs = true; } PyDict_DelItemString(kwargs.ptr(), arg.name); } else if (arg.value) { value = arg.value; } if (value) { call.args.push_back(value); call.args_convert.push_back(arg.convert); } else break; } if (args_copied < pos_args) continue; // Not enough arguments, defaults, or kwargs to fill the positional arguments } // 3. Check everything was consumed (unless we have a kwargs arg) if (kwargs && kwargs.size() > 0 && !func.has_kwargs) continue; // Unconsumed kwargs, but no py::kwargs argument to accept them // 4a. If we have a py::args argument, create a new tuple with leftovers tuple extra_args; if (func.has_args) { if (args_to_copy == 0) { // We didn't copy out any position arguments from the args_in tuple, so we // can reuse it directly without copying: extra_args = reinterpret_borrow(args_in); } else if (args_copied >= n_args_in) { extra_args = tuple(0); } else { size_t args_size = n_args_in - args_copied; extra_args = tuple(args_size); for (size_t i = 0; i < args_size; ++i) { handle item = PyTuple_GET_ITEM(args_in, args_copied + i); extra_args[i] = item.inc_ref().ptr(); } } call.args.push_back(extra_args); call.args_convert.push_back(false); } // 4b. If we have a py::kwargs, pass on any remaining kwargs if (func.has_kwargs) { if (!kwargs.ptr()) kwargs = dict(); // If we didn't get one, send an empty one call.args.push_back(kwargs); call.args_convert.push_back(false); } // 5. Put everything in a vector. Not technically step 5, we've been building it // in `call.args` all along. #if !defined(NDEBUG) if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs) pybind11_fail("Internal error: function call dispatcher inserted wrong number of arguments!"); #endif std::vector second_pass_convert; if (overloaded) { // We're in the first no-convert pass, so swap out the conversion flags for a // set of all-false flags. If the call fails, we'll swap the flags back in for // the conversion-allowed call below. second_pass_convert.resize(func.nargs, false); call.args_convert.swap(second_pass_convert); } // 6. Call the function. try { loader_life_support guard{}; result = func.impl(call); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; } if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break; if (overloaded) { // The (overloaded) call failed; if the call has at least one argument that // permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`) // then add this call to the list of second pass overloads to try. for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) { if (second_pass_convert[i]) { // Found one: swap the converting flags back in and store the call for // the second pass. call.args_convert.swap(second_pass_convert); second_pass.push_back(std::move(call)); break; } } } } if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { // The no-conversion pass finished without success, try again with conversion allowed for (auto &call : second_pass) { try { loader_life_support guard{}; result = call.func.impl(call); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; } if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break; } } } catch (error_already_set &e) { e.restore(); return nullptr; } catch (...) { /* When an exception is caught, give each registered exception translator a chance to translate it to a Python exception in reverse order of registration. A translator may choose to do one of the following: - catch the exception and call PyErr_SetString or PyErr_SetObject to set a standard (or custom) Python exception, or - do nothing and let the exception fall through to the next translator, or - delegate translation to the next translator by throwing a new type of exception. */ auto last_exception = std::current_exception(); auto ®istered_exception_translators = get_internals().registered_exception_translators; for (auto& translator : registered_exception_translators) { try { translator(last_exception); } catch (...) { last_exception = std::current_exception(); continue; } return nullptr; } PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!"); return nullptr; } if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { if (overloads->is_operator) return handle(Py_NotImplemented).inc_ref().ptr(); std::string msg = std::string(overloads->name) + "(): incompatible " + std::string(overloads->is_constructor ? "constructor" : "function") + " arguments. The following argument types are supported:\n"; int ctr = 0; for (function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { msg += " "+ std::to_string(++ctr) + ". "; bool wrote_sig = false; if (overloads->is_constructor) { // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)` std::string sig = it2->signature; size_t start = sig.find('(') + 7; // skip "(self: " if (start < sig.size()) { // End at the , for the next argument size_t end = sig.find(", "), next = end + 2; size_t ret = sig.rfind(" -> "); // Or the ), if there is no comma: if (end >= sig.size()) next = end = sig.find(')'); if (start < end && next < sig.size()) { msg.append(sig, start, end - start); msg += '('; msg.append(sig, next, ret - next); wrote_sig = true; } } } if (!wrote_sig) msg += it2->signature; msg += "\n"; } msg += "\nInvoked with: "; auto args_ = reinterpret_borrow(args_in); bool some_args = false; for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) { if (!some_args) some_args = true; else msg += ", "; msg += pybind11::repr(args_[ti]); } if (kwargs_in) { auto kwargs = reinterpret_borrow(kwargs_in); if (kwargs.size() > 0) { if (some_args) msg += "; "; msg += "kwargs: "; bool first = true; for (auto kwarg : kwargs) { if (first) first = false; else msg += ", "; msg += pybind11::str("{}={!r}").format(kwarg.first, kwarg.second); } } } PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else if (!result) { std::string msg = "Unable to convert function return value to a " "Python type! The signature was\n\t"; msg += it->signature; PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else { if (overloads->is_constructor) { auto tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr()); tinfo->init_instance(reinterpret_cast(parent.ptr()), nullptr); } return result.ptr(); } } }; /// Wrapper for Python extension modules class module : public object { public: PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check) /// Create a new top-level Python module with the given name and docstring explicit module(const char *name, const char *doc = nullptr) { if (!options::show_user_defined_docstrings()) doc = nullptr; #if PY_MAJOR_VERSION >= 3 PyModuleDef *def = new PyModuleDef(); std::memset(def, 0, sizeof(PyModuleDef)); def->m_name = name; def->m_doc = doc; def->m_size = -1; Py_INCREF(def); m_ptr = PyModule_Create(def); #else m_ptr = Py_InitModule3(name, nullptr, doc); #endif if (m_ptr == nullptr) pybind11_fail("Internal error in module::module()"); inc_ref(); } /** \rst Create Python binding for a new function within the module scope. ``Func`` can be a plain C++ function, a function pointer, or a lambda function. For details on the ``Extra&& ... extra`` argument, see section :ref:`extras`. \endrst */ template module &def(const char *name_, Func &&f, const Extra& ... extra) { cpp_function func(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); // NB: allow overwriting here because cpp_function sets up a chain with the intention of // overwriting (and has already checked internally that it isn't overwriting non-functions). add_object(name_, func, true /* overwrite */); return *this; } /** \rst Create and return a new Python submodule with the given name and docstring. This also works recursively, i.e. .. code-block:: cpp py::module m("example", "pybind11 example plugin"); py::module m2 = m.def_submodule("sub", "A submodule of 'example'"); py::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'"); \endrst */ module def_submodule(const char *name, const char *doc = nullptr) { std::string full_name = std::string(PyModule_GetName(m_ptr)) + std::string(".") + std::string(name); auto result = reinterpret_borrow(PyImport_AddModule(full_name.c_str())); if (doc && options::show_user_defined_docstrings()) result.attr("__doc__") = pybind11::str(doc); attr(name) = result; return result; } /// Import and return a module or throws `error_already_set`. static module import(const char *name) { PyObject *obj = PyImport_ImportModule(name); if (!obj) throw error_already_set(); return reinterpret_steal(obj); } // Adds an object to the module using the given name. Throws if an object with the given name // already exists. // // overwrite should almost always be false: attempting to overwrite objects that pybind11 has // established will, in most cases, break things. PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) { if (!overwrite && hasattr(*this, name)) pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" + std::string(name) + "\""); PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */); } }; /// \ingroup python_builtins /// Return a dictionary representing the global variables in the current execution frame, /// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded). inline dict globals() { PyObject *p = PyEval_GetGlobals(); return reinterpret_borrow(p ? p : module::import("__main__").attr("__dict__").ptr()); } NAMESPACE_BEGIN(detail) /// Generic support for creating new Python heap types class generic_type : public object { template friend class class_; public: PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) protected: void initialize(const type_record &rec) { if (rec.scope && hasattr(rec.scope, rec.name)) pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) + "\": an object with that name is already defined"); if (get_type_info(*rec.type)) pybind11_fail("generic_type: type \"" + std::string(rec.name) + "\" is already registered!"); m_ptr = make_new_python_type(rec); /* Register supplemental type information in C++ dict */ auto *tinfo = new detail::type_info(); tinfo->type = (PyTypeObject *) m_ptr; tinfo->cpptype = rec.type; tinfo->type_size = rec.type_size; tinfo->operator_new = rec.operator_new; tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size); tinfo->init_instance = rec.init_instance; tinfo->dealloc = rec.dealloc; tinfo->simple_type = true; tinfo->simple_ancestors = true; auto &internals = get_internals(); auto tindex = std::type_index(*rec.type); tinfo->direct_conversions = &internals.direct_conversions[tindex]; tinfo->default_holder = rec.default_holder; internals.registered_types_cpp[tindex] = tinfo; internals.registered_types_py[(PyTypeObject *) m_ptr] = { tinfo }; if (rec.bases.size() > 1 || rec.multiple_inheritance) { mark_parents_nonsimple(tinfo->type); tinfo->simple_ancestors = false; } else if (rec.bases.size() == 1) { auto parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr()); tinfo->simple_ancestors = parent_tinfo->simple_ancestors; } } /// Helper function which tags all parents of a type using mult. inheritance void mark_parents_nonsimple(PyTypeObject *value) { auto t = reinterpret_borrow(value->tp_bases); for (handle h : t) { auto tinfo2 = get_type_info((PyTypeObject *) h.ptr()); if (tinfo2) tinfo2->simple_type = false; mark_parents_nonsimple((PyTypeObject *) h.ptr()); } } void install_buffer_funcs( buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; auto tinfo = detail::get_type_info(&type->ht_type); if (!type->ht_type.tp_as_buffer) pybind11_fail( "To be able to register buffer protocol support for the type '" + std::string(tinfo->type->tp_name) + "' the associated class<>(..) invocation must " "include the pybind11::buffer_protocol() annotation!"); tinfo->get_buffer = get_buffer; tinfo->get_buffer_data = get_buffer_data; } void def_property_static_impl(const char *name, handle fget, handle fset, detail::function_record *rec_fget) { const auto is_static = !(rec_fget->is_method && rec_fget->scope); const auto has_doc = rec_fget->doc && pybind11::options::show_user_defined_docstrings(); auto property = handle((PyObject *) (is_static ? get_internals().static_property_type : &PyProperty_Type)); attr(name) = property(fget.ptr() ? fget : none(), fset.ptr() ? fset : none(), /*deleter*/none(), pybind11::str(has_doc ? rec_fget->doc : "")); } }; /// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded. template (T::operator new))>> void set_operator_new(type_record *r) { r->operator_new = &T::operator new; } template void set_operator_new(...) { } template struct has_operator_delete : std::false_type { }; template struct has_operator_delete(T::operator delete))>> : std::true_type { }; template struct has_operator_delete_size : std::false_type { }; template struct has_operator_delete_size(T::operator delete))>> : std::true_type { }; /// Call class-specific delete if it exists or global otherwise. Can also be an overload set. template ::value, int> = 0> void call_operator_delete(T *p, size_t) { T::operator delete(p); } template ::value && has_operator_delete_size::value, int> = 0> void call_operator_delete(T *p, size_t s) { T::operator delete(p, s); } inline void call_operator_delete(void *p, size_t) { ::operator delete(p); } NAMESPACE_END(detail) /// Given a pointer to a member function, cast it to its `Derived` version. /// Forward everything else unchanged. template auto method_adaptor(F &&f) -> decltype(std::forward(f)) { return std::forward(f); } template auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) { return pmf; } template auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const { return pmf; } template class class_ : public detail::generic_type { template using is_holder = detail::is_holder_type; template using is_subtype = detail::is_strict_base_of; template using is_base = detail::is_strict_base_of; // struct instead of using here to help MSVC: template struct is_valid_class_option : detail::any_of, is_subtype, is_base> {}; public: using type = type_; using type_alias = detail::exactly_one_t; constexpr static bool has_alias = !std::is_void::value; using holder_type = detail::exactly_one_t, options...>; static_assert(detail::all_of...>::value, "Unknown/invalid class_ template parameters provided"); PYBIND11_OBJECT(class_, generic_type, PyType_Check) template class_(handle scope, const char *name, const Extra &... extra) { using namespace detail; // MI can only be specified via class_ template options, not constructor parameters static_assert( none_of...>::value || // no base class arguments, or: ( constexpr_sum(is_pyobject::value...) == 1 && // Exactly one base constexpr_sum(is_base::value...) == 0 && // no template option bases none_of...>::value), // no multiple_inheritance attr "Error: multiple inheritance bases must be specified via class_ template options"); type_record record; record.scope = scope; record.name = name; record.type = &typeid(type); record.type_size = sizeof(conditional_t); record.holder_size = sizeof(holder_type); record.init_instance = init_instance; record.dealloc = dealloc; record.default_holder = std::is_same>::value; set_operator_new(&record); /* Register base classes specified via template arguments to class_, if any */ PYBIND11_EXPAND_SIDE_EFFECTS(add_base(record)); /* Process optional arguments, if any */ process_attributes::init(extra..., &record); generic_type::initialize(record); if (has_alias) { auto &instances = get_internals().registered_types_cpp; instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))]; } } template ::value, int> = 0> static void add_base(detail::type_record &rec) { rec.add_base(typeid(Base), [](void *src) -> void * { return static_cast(reinterpret_cast(src)); }); } template ::value, int> = 0> static void add_base(detail::type_record &) { } template class_ &def(const char *name_, Func&& f, const Extra&... extra) { cpp_function cf(method_adaptor(std::forward(f)), name(name_), is_method(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; } template class_ & def_static(const char *name_, Func &&f, const Extra&... extra) { static_assert(!std::is_member_function_pointer::value, "def_static(...) called with a non-static member function pointer"); cpp_function cf(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; } template class_ &def(const detail::op_ &op, const Extra&... extra) { op.execute(*this, extra...); return *this; } template class_ & def_cast(const detail::op_ &op, const Extra&... extra) { op.execute_cast(*this, extra...); return *this; } template class_ &def(const detail::init &init, const Extra&... extra) { init.execute(*this, extra...); return *this; } template class_ &def(const detail::init_alias &init, const Extra&... extra) { init.execute(*this, extra...); return *this; } template class_& def_buffer(Func &&func) { struct capture { Func func; }; capture *ptr = new capture { std::forward(func) }; install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { detail::make_caster caster; if (!caster.load(obj, false)) return nullptr; return new buffer_info(((capture *) ptr)->func(caster)); }, ptr); return *this; } template class_ &def_buffer(Return (Class::*func)(Args...)) { return def_buffer([func] (type &obj) { return (obj.*func)(); }); } template class_ &def_buffer(Return (Class::*func)(Args...) const) { return def_buffer([func] (const type &obj) { return (obj.*func)(); }); } template class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) { static_assert(std::is_base_of::value, "def_readwrite() requires a class member (or base class member)"); cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)), fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this)); def_property(name, fget, fset, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) { static_assert(std::is_base_of::value, "def_readonly() requires a class member (or base class member)"); cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)); def_property_readonly(name, fget, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)), fset([pm](object, const D &value) { *pm = value; }, scope(*this)); def_property_static(name, fget, fset, return_value_policy::reference, extra...); return *this; } template class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)); def_property_readonly_static(name, fget, return_value_policy::reference, extra...); return *this; } /// Uses return_value_policy::reference_internal by default template class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly(name, cpp_function(method_adaptor(fget)), return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property(name, fget, cpp_function(), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property_static(name, fget, cpp_function(), extra...); } /// Uses return_value_policy::reference_internal by default template class_ &def_property(const char *name, const Getter &fget, const Setter &fset, const Extra& ...extra) { return def_property(name, fget, cpp_function(method_adaptor(fset)), extra...); } template class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property(name, cpp_function(method_adaptor(fget)), fset, return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, fget, fset, is_method(*this), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset); char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */ detail::process_attributes::init(extra..., rec_fget); if (rec_fget->doc && rec_fget->doc != doc_prev) { free(doc_prev); rec_fget->doc = strdup(rec_fget->doc); } if (rec_fset) { doc_prev = rec_fset->doc; detail::process_attributes::init(extra..., rec_fset); if (rec_fset->doc && rec_fset->doc != doc_prev) { free(doc_prev); rec_fset->doc = strdup(rec_fset->doc); } } def_property_static_impl(name, fget, fset, rec_fget); return *this; } private: /// Initialize holder object, variant 1: object derives from enable_shared_from_this template static void init_holder(detail::instance *inst, detail::value_and_holder &v_h, const holder_type * /* unused */, const std::enable_shared_from_this * /* dummy */) { try { auto sh = std::dynamic_pointer_cast( v_h.value_ptr()->shared_from_this()); if (sh) { new (&v_h.holder()) holder_type(std::move(sh)); v_h.set_holder_constructed(); } } catch (const std::bad_weak_ptr &) {} if (!v_h.holder_constructed() && inst->owned) { new (&v_h.holder()) holder_type(v_h.value_ptr()); v_h.set_holder_constructed(); } } static void init_holder_from_existing(const detail::value_and_holder &v_h, const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) { new (&v_h.holder()) holder_type(*reinterpret_cast(holder_ptr)); } static void init_holder_from_existing(const detail::value_and_holder &v_h, const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) { new (&v_h.holder()) holder_type(std::move(*const_cast(holder_ptr))); } /// Initialize holder object, variant 2: try to construct from existing holder object, if possible static void init_holder(detail::instance *inst, detail::value_and_holder &v_h, const holder_type *holder_ptr, const void * /* dummy -- not enable_shared_from_this) */) { if (holder_ptr) { init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible()); v_h.set_holder_constructed(); } else if (inst->owned || detail::always_construct_holder::value) { new (&v_h.holder()) holder_type(v_h.value_ptr()); v_h.set_holder_constructed(); } } /// Performs instance initialization including constructing a holder and registering the known /// instance. Should be called as soon as the `type` value_ptr is set for an instance. Takes an /// optional pointer to an existing holder to use; if not specified and the instance is /// `.owned`, a new holder will be constructed to manage the value pointer. static void init_instance(detail::instance *inst, const void *holder_ptr) { auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type))); if (!v_h.instance_registered()) { register_instance(inst, v_h.value_ptr(), v_h.type); v_h.set_instance_registered(); } init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr()); } /// Deallocates an instance; via holder, if constructed; otherwise via operator delete. static void dealloc(const detail::value_and_holder &v_h) { if (v_h.holder_constructed()) v_h.holder().~holder_type(); else detail::call_operator_delete(v_h.value_ptr(), v_h.type->type_size); } static detail::function_record *get_function_record(handle h) { h = detail::get_function(h); return h ? (detail::function_record *) reinterpret_borrow(PyCFunction_GET_SELF(h.ptr())) : nullptr; } }; /// Binds C++ enumerations and enumeration classes to Python template class enum_ : public class_ { public: using class_::def; using class_::def_property_readonly_static; using Scalar = typename std::underlying_type::type; template enum_(const handle &scope, const char *name, const Extra&... extra) : class_(scope, name, extra...), m_entries(), m_parent(scope) { constexpr bool is_arithmetic = detail::any_of...>::value; auto m_entries_ptr = m_entries.inc_ref().ptr(); def("__repr__", [name, m_entries_ptr](Type value) -> pybind11::str { for (const auto &kv : reinterpret_borrow(m_entries_ptr)) { if (pybind11::cast(kv.second) == value) return pybind11::str("{}.{}").format(name, kv.first); } return pybind11::str("{}.???").format(name); }); def_property_readonly_static("__members__", [m_entries_ptr](object /* self */) { dict m; for (const auto &kv : reinterpret_borrow(m_entries_ptr)) m[kv.first] = kv.second; return m; }, return_value_policy::copy); def("__init__", [](Type& value, Scalar i) { value = (Type)i; }); def("__int__", [](Type value) { return (Scalar) value; }); #if PY_MAJOR_VERSION < 3 def("__long__", [](Type value) { return (Scalar) value; }); #endif def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; }); def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; }); def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; }); def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; }); def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; }); } if (std::is_convertible::value) { // Don't provide comparison with the underlying type if the enum isn't convertible, // i.e. if Type is a scoped enum, mirroring the C++ behaviour. (NB: we explicitly // convert Type to Scalar below anyway because this needs to compile). def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; }); def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; }); def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; }); def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; }); def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; }); def("__invert__", [](const Type &value) { return ~((Scalar) value); }); def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; }); def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; }); def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; }); } } def("__hash__", [](const Type &value) { return (Scalar) value; }); // Pickling and unpickling -- needed for use with the 'multiprocessing' module def("__getstate__", [](const Type &value) { return pybind11::make_tuple((Scalar) value); }); def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast()); }); } /// Export enumeration entries into the parent scope enum_& export_values() { for (const auto &kv : m_entries) m_parent.attr(kv.first) = kv.second; return *this; } /// Add an enumeration entry enum_& value(char const* name, Type value) { auto v = pybind11::cast(value, return_value_policy::copy); this->attr(name) = v; m_entries[pybind11::str(name)] = v; return *this; } private: dict m_entries; handle m_parent; }; NAMESPACE_BEGIN(detail) template struct init { template = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; /// Function which calls a specific C++ in-place constructor cl.def("__init__", [](Base *self_, Args... args) { new (self_) Base(args...); }, extra...); } template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; using Alias = typename Class::type_alias; handle cl_type = cl; cl.def("__init__", [cl_type](handle self_, Args... args) { if (self_.get_type().is(cl_type)) new (self_.cast()) Base(args...); else new (self_.cast()) Alias(args...); }, extra...); } template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { init_alias::execute(cl, extra...); } }; template struct init_alias { template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Alias = typename Class::type_alias; cl.def("__init__", [](Alias *self_, Args... args) { new (self_) Alias(args...); }, extra...); } }; inline void keep_alive_impl(handle nurse, handle patient) { if (!nurse || !patient) pybind11_fail("Could not activate keep_alive!"); if (patient.is_none() || nurse.is_none()) return; /* Nothing to keep alive or nothing to be kept alive by */ auto tinfo = all_type_info(Py_TYPE(nurse.ptr())); if (!tinfo.empty()) { /* It's a pybind-registered type, so we can store the patient in the * internal list. */ add_patient(nurse.ptr(), patient.ptr()); } else { /* Fall back to clever approach based on weak references taken from * Boost.Python. This is not used for pybind-registered types because * the objects can be destroyed out-of-order in a GC pass. */ cpp_function disable_lifesupport( [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); }); weakref wr(nurse, disable_lifesupport); patient.inc_ref(); /* reference patient and leak the weak reference */ (void) wr.release(); } } PYBIND11_NOINLINE inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) { keep_alive_impl( Nurse == 0 ? ret : Nurse <= call.args.size() ? call.args[Nurse - 1] : handle(), Patient == 0 ? ret : Patient <= call.args.size() ? call.args[Patient - 1] : handle() ); } inline std::pair all_type_info_get_cache(PyTypeObject *type) { auto res = get_internals().registered_types_py #ifdef __cpp_lib_unordered_map_try_emplace .try_emplace(type); #else .emplace(type, std::vector()); #endif if (res.second) { // New cache entry created; set up a weak reference to automatically remove it if the type // gets destroyed: weakref((PyObject *) type, cpp_function([type](handle wr) { get_internals().registered_types_py.erase(type); wr.dec_ref(); })).release(); } return res; } template struct iterator_state { Iterator it; Sentinel end; bool first_or_done; }; NAMESPACE_END(detail) template detail::init init() { return detail::init(); } template detail::init_alias init_alias() { return detail::init_alias(); } /// Makes a python iterator from a first and past-the-end C++ InputIterator. template ()), typename... Extra> iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state state; if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> ValueType { if (!s.first_or_done) ++s.it; else s.first_or_done = false; if (s.it == s.end) { s.first_or_done = true; throw stop_iteration(); } return *s.it; }, std::forward(extra)..., Policy); } return cast(state{first, last, true}); } /// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a /// first and past-the-end InputIterator. template ()).first), typename... Extra> iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state state; if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> KeyType { if (!s.first_or_done) ++s.it; else s.first_or_done = false; if (s.it == s.end) { s.first_or_done = true; throw stop_iteration(); } return (*s.it).first; }, std::forward(extra)..., Policy); } return cast(state{first, last, true}); } /// Makes an iterator over values of an stl container or other container supporting /// `std::begin()`/`std::end()` template iterator make_iterator(Type &value, Extra&&... extra) { return make_iterator(std::begin(value), std::end(value), extra...); } /// Makes an iterator over the keys (`.first`) of a stl map-like container supporting /// `std::begin()`/`std::end()` template iterator make_key_iterator(Type &value, Extra&&... extra) { return make_key_iterator(std::begin(value), std::end(value), extra...); } template void implicitly_convertible() { auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { if (!detail::make_caster().load(obj, false)) return nullptr; tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) PyErr_Clear(); return result; }; if (auto tinfo = detail::get_type_info(typeid(OutputType))) tinfo->implicit_conversions.push_back(implicit_caster); else pybind11_fail("implicitly_convertible: Unable to find type " + type_id()); } template void register_exception_translator(ExceptionTranslator&& translator) { detail::get_internals().registered_exception_translators.push_front( std::forward(translator)); } /** * Wrapper to generate a new Python exception type. * * This should only be used with PyErr_SetString for now. * It is not (yet) possible to use as a py::base. * Template type argument is reserved for future use. */ template class exception : public object { public: exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { std::string full_name = scope.attr("__name__").cast() + std::string(".") + name; m_ptr = PyErr_NewException(const_cast(full_name.c_str()), base, NULL); if (hasattr(scope, name)) pybind11_fail("Error during initialization: multiple incompatible " "definitions with name \"" + std::string(name) + "\""); scope.attr(name) = *this; } // Sets the current python exception to this exception object with the given message void operator()(const char *message) { PyErr_SetString(m_ptr, message); } }; /** * Registers a Python exception in `m` of the given `name` and installs an exception translator to * translate the C++ exception to the created Python exception using the exceptions what() method. * This is intended for simple exception translations; for more complex translation, register the * exception object and translator directly. */ template exception ®ister_exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { static exception ex(scope, name, base); register_exception_translator([](std::exception_ptr p) { if (!p) return; try { std::rethrow_exception(p); } catch (const CppException &e) { ex(e.what()); } }); return ex; } NAMESPACE_BEGIN(detail) PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) { auto strings = tuple(args.size()); for (size_t i = 0; i < args.size(); ++i) { strings[i] = str(args[i]); } auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" "); auto line = sep.attr("join")(strings); object file; if (kwargs.contains("file")) { file = kwargs["file"].cast(); } else { try { file = module::import("sys").attr("stdout"); } catch (const error_already_set &) { /* If print() is called from code that is executed as part of garbage collection during interpreter shutdown, importing 'sys' can fail. Give up rather than crashing the interpreter in this case. */ return; } } auto write = file.attr("write"); write(line); write(kwargs.contains("end") ? kwargs["end"] : cast("\n")); if (kwargs.contains("flush") && kwargs["flush"].cast()) file.attr("flush")(); } NAMESPACE_END(detail) template void print(Args &&...args) { auto c = detail::collect_arguments(std::forward(args)...); detail::print(c.args(), c.kwargs()); } #if defined(WITH_THREAD) && !defined(PYPY_VERSION) /* The functions below essentially reproduce the PyGILState_* API using a RAII * pattern, but there are a few important differences: * * 1. When acquiring the GIL from an non-main thread during the finalization * phase, the GILState API blindly terminates the calling thread, which * is often not what is wanted. This API does not do this. * * 2. The gil_scoped_release function can optionally cut the relationship * of a PyThreadState and its associated thread, which allows moving it to * another thread (this is a fairly rare/advanced use case). * * 3. The reference count of an acquired thread state can be controlled. This * can be handy to prevent cases where callbacks issued from an external * thread would otherwise constantly construct and destroy thread state data * structures. * * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an * example which uses features 2 and 3 to migrate the Python thread of * execution to another thread (to run the event loop on the original thread, * in this case). */ class gil_scoped_acquire { public: PYBIND11_NOINLINE gil_scoped_acquire() { auto const &internals = detail::get_internals(); tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate); if (!tstate) { tstate = PyThreadState_New(internals.istate); #if !defined(NDEBUG) if (!tstate) pybind11_fail("scoped_acquire: could not create thread state!"); #endif tstate->gilstate_counter = 0; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(internals.tstate); #endif PyThread_set_key_value(internals.tstate, tstate); } else { release = detail::get_thread_state_unchecked() != tstate; } if (release) { /* Work around an annoying assertion in PyThreadState_Swap */ #if defined(Py_DEBUG) PyInterpreterState *interp = tstate->interp; tstate->interp = nullptr; #endif PyEval_AcquireThread(tstate); #if defined(Py_DEBUG) tstate->interp = interp; #endif } inc_ref(); } void inc_ref() { ++tstate->gilstate_counter; } PYBIND11_NOINLINE void dec_ref() { --tstate->gilstate_counter; #if !defined(NDEBUG) if (detail::get_thread_state_unchecked() != tstate) pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!"); if (tstate->gilstate_counter < 0) pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!"); #endif if (tstate->gilstate_counter == 0) { #if !defined(NDEBUG) if (!release) pybind11_fail("scoped_acquire::dec_ref(): internal error!"); #endif PyThreadState_Clear(tstate); PyThreadState_DeleteCurrent(); PyThread_delete_key_value(detail::get_internals().tstate); release = false; } } PYBIND11_NOINLINE ~gil_scoped_acquire() { dec_ref(); if (release) PyEval_SaveThread(); } private: PyThreadState *tstate = nullptr; bool release = true; }; class gil_scoped_release { public: explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) { // `get_internals()` must be called here unconditionally in order to initialize // `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an // initialization race could occur as multiple threads try `gil_scoped_acquire`. const auto &internals = detail::get_internals(); tstate = PyEval_SaveThread(); if (disassoc) { auto key = internals.tstate; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(key); #else PyThread_set_key_value(key, nullptr); #endif } } ~gil_scoped_release() { if (!tstate) return; PyEval_RestoreThread(tstate); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(key); #endif PyThread_set_key_value(key, tstate); } } private: PyThreadState *tstate; bool disassoc; }; #elif defined(PYPY_VERSION) class gil_scoped_acquire { PyGILState_STATE state; public: gil_scoped_acquire() { state = PyGILState_Ensure(); } ~gil_scoped_acquire() { PyGILState_Release(state); } }; class gil_scoped_release { PyThreadState *state; public: gil_scoped_release() { state = PyEval_SaveThread(); } ~gil_scoped_release() { PyEval_RestoreThread(state); } }; #else class gil_scoped_acquire { }; class gil_scoped_release { }; #endif error_already_set::~error_already_set() { if (type) { gil_scoped_acquire gil; type.release().dec_ref(); value.release().dec_ref(); trace.release().dec_ref(); } } inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) { handle self = detail::get_object_handle(this_ptr, this_type); if (!self) return function(); handle type = self.get_type(); auto key = std::make_pair(type.ptr(), name); /* Cache functions that aren't overloaded in Python to avoid many costly Python dictionary lookups below */ auto &cache = detail::get_internals().inactive_overload_cache; if (cache.find(key) != cache.end()) return function(); function overload = getattr(self, name, function()); if (overload.is_cpp_function()) { cache.insert(key); return function(); } /* Don't call dispatch code if invoked from overridden function. Unfortunately this doesn't work on PyPy. */ #if !defined(PYPY_VERSION) PyFrameObject *frame = PyThreadState_Get()->frame; if (frame && (std::string) str(frame->f_code->co_name) == name && frame->f_code->co_argcount > 0) { PyFrame_FastToLocals(frame); PyObject *self_caller = PyDict_GetItem( frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0)); if (self_caller == self.ptr()) return function(); } #else /* PyPy currently doesn't provide a detailed cpyext emulation of frame objects, so we have to emulate this using Python. This is going to be slow..*/ dict d; d["self"] = self; d["name"] = pybind11::str(name); PyObject *result = PyRun_String( "import inspect\n" "frame = inspect.currentframe()\n" "if frame is not None:\n" " frame = frame.f_back\n" " if frame is not None and str(frame.f_code.co_name) == name and " "frame.f_code.co_argcount > 0:\n" " self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n" " if self_caller == self:\n" " self = None\n", Py_file_input, d.ptr(), d.ptr()); if (result == nullptr) throw error_already_set(); if (d["self"].is_none()) return function(); Py_DECREF(result); #endif return overload; } template function get_overload(const T *this_ptr, const char *name) { auto tinfo = detail::get_type_info(typeid(T)); return tinfo ? get_type_overload(this_ptr, tinfo, name) : function(); } #define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \ pybind11::gil_scoped_acquire gil; \ pybind11::function overload = pybind11::get_overload(static_cast(this), name); \ if (overload) { \ auto o = overload(__VA_ARGS__); \ if (pybind11::detail::cast_is_temporary_value_reference::value) { \ static pybind11::detail::overload_caster_t caster; \ return pybind11::detail::cast_ref(std::move(o), caster); \ } \ else return pybind11::detail::cast_safe(std::move(o)); \ } \ } #define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ return cname::fn(__VA_ARGS__) #define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\""); #define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \ PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__) #define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \ PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__) NAMESPACE_END(pybind11) #if defined(_MSC_VER) # pragma warning(pop) #elif defined(__INTEL_COMPILER) /* Leave ignored warnings on */ #elif defined(__GNUG__) && !defined(__clang__) # pragma GCC diagnostic pop #endif