# PaddleOCR Quick Start **Note:** This tutorial mainly introduces the usage of PP-OCR series models, please refer to [PP-Structure Quick Start](../../ppstructure/docs/quickstart_en.md) for the quick use of document analysis related functions. - [1. Installation](#1-installation) - [1.1 Install PaddlePaddle](#11-install-paddlepaddle) - [1.2 Install PaddleOCR Whl Package](#12-install-paddleocr-whl-package) - [2. Easy-to-Use](#2-easy-to-use) - [2.1 Use by Command Line](#21-use-by-command-line) - [2.1.1 Chinese and English Model](#211-chinese-and-english-model) - [2.1.2 Multi-language Model](#212-multi-language-model) - [2.2 Use by Code](#22-use-by-code) - [2.2.1 Chinese & English Model and Multilingual Model](#221-chinese--english-model-and-multilingual-model) - [3. Summary](#3-summary) ## 1. Installation ### 1.1 Install PaddlePaddle > If you do not have a Python environment, please refer to [Environment Preparation](./environment_en.md). - If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install ```bash python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple ``` - If you have no available GPU on your machine, please run the following command to install the CPU version ```bash python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation. ### 1.2 Install PaddleOCR Whl Package ```bash pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+ ``` - **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely). Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found) - **For layout analysis users**, run the following command to install **Layout-Parser** ```bash pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl ``` ## 2. Easy-to-Use ### 2.1 Use by Command Line PaddleOCR provides a series of test images, click [here](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip) to download, and then switch to the corresponding directory in the terminal ```bash cd /path/to/ppocr_img ``` If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path #### 2.1.1 Chinese and English Model * Detection, direction classification and recognition: set the parameter`--use_gpu false` to disable the gpu device ```bash paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en --use_gpu false ``` Output will be a list, each item contains bounding box, text and recognition confidence ```bash [[[441.0, 174.0], [1166.0, 176.0], [1165.0, 222.0], [441.0, 221.0]], ('ACKNOWLEDGEMENTS', 0.9971134662628174)] [[[403.0, 346.0], [1204.0, 348.0], [1204.0, 384.0], [402.0, 383.0]], ('We would like to thank all the designers and', 0.9761400818824768)] [[[403.0, 396.0], [1204.0, 398.0], [1204.0, 434.0], [402.0, 433.0]], ('contributors who have been involved in the', 0.9791957139968872)] ...... ``` * Only detection: set `--rec` to `false` ```bash paddleocr --image_dir ./imgs_en/img_12.jpg --rec false ``` Output will be a list, each item only contains bounding box ```bash [[397.0, 802.0], [1092.0, 802.0], [1092.0, 841.0], [397.0, 841.0]] [[397.0, 750.0], [1211.0, 750.0], [1211.0, 789.0], [397.0, 789.0]] [[397.0, 702.0], [1209.0, 698.0], [1209.0, 734.0], [397.0, 738.0]] ...... ``` * Only recognition: set `--det` to `false` ```bash paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en ``` Output will be a list, each item contains text and recognition confidence ```bash ['PAIN', 0.9934559464454651] ``` If you need to use the 2.0 model, please specify the parameter `--ocr_version PP-OCR`, paddleocr uses the PP-OCRv3 model by default(`--ocr_version PP-OCRv3`). More whl package usage can be found in [whl package](./whl_en.md) #### 2.1.2 Multi-language Model PaddleOCR currently supports 80 languages, which can be switched by modifying the `--lang` parameter. PP-OCRv3 currently only supports Chinese and English models, and other multilingual models will be updated one after another. ``` bash paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en ```
The result is a list, each item contains a text box, text and recognition confidence ```text [[[67.0, 51.0], [327.0, 46.0], [327.0, 74.0], [68.0, 80.0]], ('PHOCAPITAL', 0.9944712519645691)] [[[72.0, 92.0], [453.0, 84.0], [454.0, 114.0], [73.0, 122.0]], ('107 State Street', 0.9744491577148438)] [[[69.0, 135.0], [501.0, 125.0], [501.0, 156.0], [70.0, 165.0]], ('Montpelier Vermont', 0.9357033967971802)] ...... ``` Commonly used multilingual abbreviations include | Language | Abbreviation | | Language | Abbreviation | | Language | Abbreviation | | ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ | | Chinese & English | ch | | French | fr | | Japanese | japan | | English | en | | German | german | | Korean | korean | | Chinese Traditional | chinese_cht | | Italian | it | | Russian | ru | A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./multi_languages_en.md) ### 2.2 Use by Code #### 2.2.1 Chinese & English Model and Multilingual Model * detection, angle classification and recognition: ```python from paddleocr import PaddleOCR,draw_ocr # Paddleocr supports Chinese, English, French, German, Korean and Japanese. # You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan` # to switch the language model in order. ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory img_path = './imgs_en/img_12.jpg' result = ocr.ocr(img_path, cls=True) for line in result: print(line) # draw result from PIL import Image image = Image.open(img_path).convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf') im_show = Image.fromarray(im_show) im_show.save('result.jpg') ``` Output will be a list, each item contains bounding box, text and recognition confidence ```bash [[[441.0, 174.0], [1166.0, 176.0], [1165.0, 222.0], [441.0, 221.0]], ('ACKNOWLEDGEMENTS', 0.9971134662628174)] [[[403.0, 346.0], [1204.0, 348.0], [1204.0, 384.0], [402.0, 383.0]], ('We would like to thank all the designers and', 0.9761400818824768)] [[[403.0, 396.0], [1204.0, 398.0], [1204.0, 434.0], [402.0, 433.0]], ('contributors who have been involved in the', 0.9791957139968872)] ...... ``` Visualization of results
## 3. Summary In this section, you have mastered the use of PaddleOCR whl package. PaddleOCR is a rich and practical OCR tool library that get through the whole process of data production, model training, compression, inference and deployment, please refer to the [tutorials](../../README.md#tutorials) to start the journey of PaddleOCR.