# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import random from paddle.io import Dataset import json from .imaug import transform, create_operators class PubTabDataSet(Dataset): def __init__(self, config, mode, logger, seed=None): super(PubTabDataSet, self).__init__() self.logger = logger global_config = config['Global'] dataset_config = config[mode]['dataset'] loader_config = config[mode]['loader'] label_file_path = dataset_config.pop('label_file_path') self.data_dir = dataset_config['data_dir'] self.do_shuffle = loader_config['shuffle'] self.do_hard_select = False if 'hard_select' in loader_config: self.do_hard_select = loader_config['hard_select'] self.hard_prob = loader_config['hard_prob'] if self.do_hard_select: self.img_select_prob = self.load_hard_select_prob() self.table_select_type = None if 'table_select_type' in loader_config: self.table_select_type = loader_config['table_select_type'] self.table_select_prob = loader_config['table_select_prob'] self.seed = seed logger.info("Initialize indexs of datasets:%s" % label_file_path) with open(label_file_path, "rb") as f: self.data_lines = f.readlines() self.data_idx_order_list = list(range(len(self.data_lines))) if mode.lower() == "train": self.shuffle_data_random() self.ops = create_operators(dataset_config['transforms'], global_config) ratio_list = dataset_config.get("ratio_list", [1.0]) self.need_reset = True in [x < 1 for x in ratio_list] def shuffle_data_random(self): if self.do_shuffle: random.seed(self.seed) random.shuffle(self.data_lines) return def __getitem__(self, idx): try: data_line = self.data_lines[idx] data_line = data_line.decode('utf-8').strip("\n") info = json.loads(data_line) file_name = info['filename'] select_flag = True if self.do_hard_select: prob = self.img_select_prob[file_name] if prob < random.uniform(0, 1): select_flag = False if self.table_select_type: structure = info['html']['structure']['tokens'].copy() structure_str = ''.join(structure) table_type = "simple" if 'colspan' in structure_str or 'rowspan' in structure_str: table_type = "complex" if table_type == "complex": if self.table_select_prob < random.uniform(0, 1): select_flag = False if select_flag: cells = info['html']['cells'].copy() structure = info['html']['structure'].copy() img_path = os.path.join(self.data_dir, file_name) data = { 'img_path': img_path, 'cells': cells, 'structure': structure } if not os.path.exists(img_path): raise Exception("{} does not exist!".format(img_path)) with open(data['img_path'], 'rb') as f: img = f.read() data['image'] = img outs = transform(data, self.ops) else: outs = None except Exception as e: self.logger.error( "When parsing line {}, error happened with msg: {}".format( data_line, e)) outs = None if outs is None: return self.__getitem__(np.random.randint(self.__len__())) return outs def __len__(self): return len(self.data_idx_order_list)